Network Working Group E. Allman
Request for Comments: 4871 Sendmail, Inc.
Obsoletes: 4870 J. Cdllas

Category: Standards Track PGP Corporation
M. Delany

M. Libbey

Y ahoo! Inc

J. Fenton

M. Thomas

Cisco Systems, Inc.
May 2007

DomainKeys Identified Mail (DKIM) Signatures

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and
reguests discussion and suggestions for improvements. Please refer to the current edition of the
“Internet Official Protocol Standards’ (STD 1) for the standardization state and status of this
protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright © The IETF Trust (2007). All Rights Reserved.

Abstract

DomainKeys Identified Mail (DKIM) defines adomain-level authentication framework for email
using public-key cryptography and key server technology to permit verification of the source and
contents of messages by either Mail Transfer Agents (MTAS) or Mail User Agents (MUAS). The
ultimate goal of this framework isto permit a signing domain to assert responsibility for a message,
thus protecting message signer identity and the integrity of the messages they convey while retaining
the functionality of Internet email asit is known today. Protection of email identity may assist in the
global control of "spam™ and "phishing".

Allman, et al. Standards Track [Page 1]

http://tools.ietf.org/html/rfc4870

RFC 4871 DKIM Signatures May 2007

Table of Contents

N 0 o [f o o TSR 5
0 T T T o T Ko = (]2 5
DS o oY 5
1.3 SIMple K@Y MaNAGEIMENL........ccueiiirierieieieie sttt b et b e b e e et b e b et s e e e sesbesbenteneas 6
2 Terminology and DEfiNITIONS.......cciiiiieieiete ittt a b s e nre s 7
2N RS o = SRS 7
AV) 1 P 7
B T VAT 41 (= 0 = o RSP 7
24 CoMMON ABNF TOKENS... .ottt e st e et e tesbeeseeneeneesneeneeneeseesneeneeneas 7
25 IMPOrted ABNF TOKENS.......cciiuiiieiisieitiee sttt s e se et e e te s s re e te s besae e e e s testeeaeetestesreenaentesneeneesenrens 8
2.6 DKIM-QUOE-PrINtADIE........coieeeeieesiesee sttt sttt neeneseenae e eneenas 8
G oo Toto I = =0T o PR 10
TNt S = o (o ST 10
G - o AV 0T I T (SNSRI 11
3.3 Signing and Verification AIGOrthmS...........cooiiiiiiiiiiee s 12
K O o g o= [2 Lo PSSP 13
3.5 The DKIM-Signature Header FIEld...........oooiiiiiieiiiceese e 16
3.6 Key Management and REPIESENTALION..........cceiiiieieeie ettt reean e 21
3.7 Computing the MESSAgE HASNES.........ccooiiiiieieieeee e 24
3.8 SIgning DY Parent DOMEINS..........ccceiueeiierieiieeiesiesteseeee e e e e e e saestestessaesesbesreesaensesaesseessessesnens 26
4 Semantics Of MUILIPIE SIGNAIUNES.........ciiiiirieeeree e 27
R T 111 o LS = 7= 1 101 27
A | 01 C= 4 0 (= = o] o OSSR PTP SRR 27
IS o g1 g ox o g TSSOSO UR TP PSURPRPPPPN 29
5.1 Determine Whether the Email Should Be Signed and by Whom...........cccccoeveveiiiiccece e 29
5.2 Select aPrivate Key and Corresponding Selector Information............coeeeereveeeeeneneeeenese e 29
5.3 Normalize the Message to Prevent Transport CONVErSIONS.........curereriereeeeesesieseeseeesseseesseseeseesens 29
54 Determine the Header FIEldS 10 SIgN.....cccioiie i 30
55 Recommended SigNature COMEME..........ouiirueirererireieese st e e be e s e ene s s 31
5.6 Compute the Message Hash and SIQNaLUIE...........ceeueiiriiriie it eee e see s eeeses e sneesneesnee s 32
5.7 Insert the DKIM-Signature Header Field.........ccooiiiiiiiiiieeeeeeses e 32
LIV Y L= N o A o SRS 34
6.1 Extract SIgnatures from the MESSAGE........ccuiiiiieieie ettt sreesaenaesre s 34
6.2 Communicate VerifiCalion RESUILS...........cooiii et 38
6.3 Interpret ReSUILSAPPIY LOCA POLICY.......ccueiiiieciciesie sttt st s 38

Allman, et al. Standards Track [Page 2]

RFC 4871 DKIM Signatures May 2007

A AN N TN O] 1= T 1= = o] 1R 40
7.1 DKIM-Signature Tag SPECifiCalIONS.........ccviviiieieiieceeeeste sttt sae et sbesreeaeenesne e 40
7.2 DKIM-Signature Query Method REJISIIYcuiiieieiririsiesie et 40
7.3 DKIM-Signature Canonicalization REGISIIY......cciiiiieieieieieese s eie st ste s sae e sae e e e ens 40
7.4 _domainkey DNS TXT Record Tag SPeCifiCaliONS..........cceieeeririerieieeisese e 41
7.5 DKIM KEY TYPE REGISHY...ueiiiiiieeeeeie ittt sttt ettt e te st aeste s aesseenaesbesreensastestesnaesestesreensensens 41
7.6 DKIM Hash AlQOrithms REJISITY.......cccueiiiiii e see e e s s e s s s e st esre e saeesreesaeesrnenreens 42
7.7 DKIM SerVICE TYPES REJISIIY....eceeuieuirtiriiieieieie sttt sttt sttt sb b ne e 42
7.8 DKIM Selector FIags REQISIIY.....ccuiieiieiiie e s see st ee e s eeseesaee e sreeseesreesneesneesneesreesneesneesneesnnes 42
7.9 DKIM-Signature HEAEr FIElU.......coviieiee ettt ee e 42
8 SECUNITY CONSIAEN ALIONS.......iititieeiieiiste sttt sttt b et e e et ese b e b et e e e seebesbe b e e e e enenrens 43
8.1 Misuse of Body Length LimitS ("1=" Tag)....ccccvceiiiiieieie sttt st s 43
8.2 Misappropriated Privale K@Y ..ot 43
8.3 Key Server Denial-0f-ServiCe AMACKS.........ciiiiiiee ettt eene s 44
8.4 AUAcks AQaiNSt the DINS........oo ettt et et e seeere e e e eesaeeneeeees 44
8.5 REPIAY ATLBCKS.....uiitiiiieieeete et e ettt e et b b e e 44
8.6 LimitS 0N REVOKING KEYS.....cccuiciiciicie ettt et sttt e et e te et e enteenneeneeenns 45
8.7 Intentionally Malformed K&y RECOITS..........ccuvirierieiriniesieieis et 45
8.8 Intentionaly Malformed DKIM-Signature Header Fields..........cccooovviirieiie i 45
8.9 INfOrMELiON LEEKAOE.cueiueteeeieieieste ettt b et b e et e ne e 45
8.10 RemMOtE TiMING ATACKS......cieieie ettt e e s e et e sbesbe et e s besaeeneesresreeneennas 45
8.11 Reordered Heater FIElUS......c.eo ettt st sre et snesneenee e e 45
ST A YN N L7 TSRS 46
8.13 Inappropriate Signing by Parent DOMAINS...........ccoiriereirirerieieese e 46
LS I L = =TS 47
9.1 NOIMELIVE REFEIENCES........eeiieiii ettt e et et e e e testesae e e e tesbeeseeseseesseensensenrens 47
9.2 INfOrMatiVe REFEIENCES...... oottt et e st st eseeseesreeneenee s 47
AULNOIS AQANESSES.....o ettt sttt b e st et e s teeaeeneeseesbeemeebesbesreeneenbesaeeneeseeneas 49

A Example of USE (INFORMATIVE).....ciiieenene ettt 51
A1l The user COMPOSES AN EMAIL. ..ottt e eesteeseeeeseeseeeneeneeee 51
A2 The emMail 1S SIONEU.......ooiiiiiire ettt e et b e b e et b b b e 51
A.3 The email SIgNatUre iS VEIITIEU......ccco i s r e sre e e 51
B Usage EXampleS (INFORMATIVE).... ettt eteste sttt ee s see sttt snne e enee s 53
B.1 Alternate SUDMISSION SCENAITOS.......cciiiiriieiereeieeiesie st et e e se st e eseeste e eeestesreeseesesaesneeeessesseeneeneas 53
B.2 Alternate DElIVENY SCENAIOS......cceiviiiecieie ettt sttt et be e ere et e s besaeeseestesreenneneesreans 54
C Creating a Public Key (INFORMATIVE)..... sttt ste e 57

D L 7N @0 1= Yo [= = o 1S 58

Allman, et al. Standards Track [Page 3]

RFC 4871

E Acknowledgements

DKIM Signatures May 2007

Intellectual Property and Copyright SEAtEMENTS.........cceoiieirireeeee e 60

Allman, et al.

Standards Track [Page 4]

RFC 4871 DKIM Signatures May 2007

11

1.2

Introduction

DomainKeys Identified Mail (DKIM) defines a mechanism by which email messages can be
cryptographically signed, permitting a signing domain to claim responsibility for the introduction of
amessage into the mail stream. Message recipients can verify the signature by querying the signer's
domain directly to retrieve the appropriate public key, and thereby confirm that the message was
attested to by a party in possession of the private key for the signing domain.

The approach taken by DKIM differs from previous approaches to message signing (e.g.,
Secure/Multipurpose Internet Mail Extensions (SMIME) [RFC1847], OpenPGP [RFC2440]) in
that:

» the message signature is written as a message header field so that neither human recipients nor
existing MUA (Mail User Agent) software is confused by signature-related content appearing in
the message body;

» thereisno dependency on public and private key pairs being issued by well-known, trusted
certificate authorities;

» thereisno dependency on the deployment of any new Internet protocols or services for public
key distribution or revocation;

» signature verification failure does not force rejection of the message;

e no attempt is made to include encryption as part of the mechanism;

* message archiving is not a design goal.

DKIM:

» iscompatible with the existing email infrastructure and transparent to the fullest extent possible;
e requiresminimal new infrastructure;

» can beimplemented independently of clients in order to reduce deployment time;

e can be deployed incrementally;

» alowsdelegation of signing to third parties.

Signing Identity

DKIM separates the question of the identity of the signer of the message from the purported author
of the message. In particular, a signature includes the identity of the signer. Verifiers can use the
signing information to decide how they want to process the message. The signing identity is included
as part of the signature header field.

INFORMATIVE RATIONALE: The signing identity specified by a DKIM signature is not

required to match an address in any particular header field because of the broad methods of
interpretation by recipient mail systems, including MUAs.

Scalability

DKIM is designed to support the extreme scalability requirements that characterize the email
identification problem. There are currently over 70 million domains and a much larger number of
individual addresses. DKIM seeks to preserve the positive aspects of the current email infrastructure,
such as the ability for anyone to communicate with anyone el se without introduction.

Allman, et al. Standards Track [Page 5]

RFC 4871 DKIM Signatures May 2007

1.3 Simple Key Management

DKIM differs from traditional hierarchical public-key systemsin that no Certificate Authority
infrastructure is required; the verifier requests the public key from arepository in the domain of the
claimed signer directly rather than from athird party.

The DNS s proposed as theinitial mechanism for the public keys. Thus, DKIM currently depends
on DNS administration and the security of the DNS system. DKIM is designed to be extensible to
other key fetching services as they become available.

Allman, et al. Standards Track [Page 6]

RFC 4871 DKIM Signatures May 2007

2. Terminology and Definitions

This section defines terms used in the rest of the document. Syntax descriptions use the form
described in Augmented BNF for Syntax Specifications [RFC4234].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

2.1 Signers

Elementsin the mail system that sign messages on behalf of a domain are referred to as signers.
These may be MUASs (Mail User Agents), MSAs (Mail Submission Agents), MTAs (Mail Transfer
Agents), or other agents such as mailing list exploders. In general, any signer will be involved in the
injection of a message into the message system in some way. The key issue is that a message must
be signed before it leaves the administrative domain of the signer.

2.2 Verifiers

Elementsin the mail system that verify signatures are referred to as verifiers. These may be MTAS,
Mail Delivery Agents (MDAS), or MUAS. In most casesiit is expected that verifierswill be close to
an end user (reader) of the message or some consuming agent such as amailing list exploder.

2.3 Whitespace

There are three forms of whitespace:

» WSP represents simple whitespace, i.e., a space or atab character (formal definitionin
[RFC4234]).

* LWSPislinear whitespace, defined as WSP plus CRLF (formal definition in [RFC4234]).
* FWSisfolding whitespace. It allows multiple lines separated by CRLF followed by at |east one
whitespace, to be joined.

The formal ABNF for these are (WSP and LWSP are given for information only):

WP = SP / HTAB
LWSP = *(WSP / CRLF W\GP)
FWs = [*WSP CRLF] 1*W&P

The definition of FWSisidentical to that in [RFC2822] except for the exclusion of obs-FWS.

2.4 Common ABNF Tokens

The following ABNF tokens are used el sewhere in this document:

hyphenated-word = ALPHA [*(ALPHA / DIGT / "-") (ALPHA /
DIGT)]
base64string = 1*(ALPHA / DIGT / "+" ["/" [[FWg])
["= [Fws] [=" [Fvg]]]

Allman, et al. Standards Track [Page 7]

RFC 4871 DKIM Signatures May 2007

2.5

2.6

Imported ABNF Tokens

The following tokens are imported from other RFCs as noted. Those RFCs should be considered
definitive.

The following tokens are imported from [RFC2821]:

* Local - part (implementation warning: this permits quoted strings)

e sSub-domain

The following tokens are imported from [RFC2822]:
« fiel d-nanme (name of aheader field)
e dot-atomtext (intheloca-part of an email address)

The following tokens are imported from [RFC2045]:
e (p-section (asingleline of quoted-printable-encoded text)
« hex-oct et (aquoted-printable encoded octet)

INFORMATIVE NOTE: Be aware that the ABNF in RFC 2045 does not obey the rules of RFC
4234 and must be interpreted accordingly, particularly as regards case folding.

Other tokens not defined herein are imported from [RFC4234]. These are intuitive primitives such as
SP, HTAB, WSP, ALPHA, DIGIT, CRLF, etc.

DKIM-Quoted-Printable

The DKIM-Quoted-Printable encoding syntax resembles that described in Quoted-Printable
[RFC2045], Section 6.7: any character MAY be encoded as an "=" followed by two hexadecimal
digits from the a phabet "0123456789ABCDEF" (no lowercase characters permitted) representing
the hexadecimal-encoded integer value of that character. All control characters (those with values
< %x20), 8-bit characters (values > %x7F), and the characters DEL (%x7F), SPACE (%x20), and
semicolon (*;", %x3B) MUST be encoded. Note that all whitespace, including SPACE, CR, and LF
characters, MUST be encoded. After encoding, FWS MAY be added at arbitrary locationsin order
to avoid excessively long lines; such whitespaceis NOT part of the value, and MUST be removed
before decoding.

ABNF:

dki m quot ed-printable =
*(FW5 / hex-octet / dki msafe-char)
: hex-octet is from RFC 2045

dki m saf e-char = %x21-3A /| %3C /| W3E-7E
N S

: Characters not listed as "mail-safe" in
. RFC 2049 are al so not recommended.

INFORMATIVE NOTE: DKIM-Quoted-Printable differs from Quoted-Printable as defined in

RFC 2045 in several important ways:

1. Whitespacein the input text, including CR and LF, must be encoded. RFC 2045 does not
reguire such encoding, and does not permit encoding of CR or LF characters that are part of
aCRLF line break.

Allman, et al. Standards Track [Page 8]

RFC 4871 DKIM Signatures May 2007

2. Whitespace in the encoded text isignored. Thisisto alow tags encoded using
DKIM-Quoted-Printable to be wrapped as needed. In particular, RFC 2045 requires that line
breaksin the input be represented as physical line breaks; that is not the case here.

3. The"soft line break" syntax ("=" as the last non-whitespace character on the line) does not
apply.
4. DKIM-Quoted-Printable does not require that encoded lines be no more than 76 characters

long (although there may be other requirements depending on the context in which the
encoded text is being used).

Allman, et al. Standards Track [Page 9]

RFC 4871 DKIM Signatures May 2007

3.1

Protocol Elements

Protocol Elements are conceptual parts of the protocol that are not specific to either signers or
verifiers. The protocol descriptions for signers and verifiers are described in later sections (Signer
Actions (Section 5) and Verifier Actions (Section 6)). NOTE: This section must be read in the
context of those sections.

Selectors

To support multiple concurrent public keys per signing domain, the key namespace is subdivided
using "selectors'. For example, selectors might indicate the names of office locations (e.g.,
"sanfrancisco”, "coolumbeach", and "reykjavik"), the signing date (e.g., "january2005",
"february2005", etc.), or even the individual user.

Selectors are needed to support some important use cases. For example:

» Domains that want to delegate signing capability for a specific address for a given duration to a
partner, such as an advertising provider or other outsourced function.

» Domainsthat want to allow frequent travelers to send messages locally without the need to
connect with a particular MSA.

« "Affinity" domains (e.g., college aumni associations) that provide forwarding of incoming mail,
but that do not operate a mail submission agent for outgoing mail.

Periods are alowed in selectors and are component separators. When keys are retrieved from the
DNS, periods in selectors define DNS label boundaries in a manner similar to the conventional use
in domain names. Selector components might be used to combine dates with locations, for example,
"march2005.reykjavik". In a DNS implementation, this can be used to allow delegation of a portion
of the selector namespace.

ABNF:

sel ector = sub-domain *("." sub-donmain)

The number of public keys and corresponding selectors for each domain is determined by

the domain owner. Many domain owners will be satisfied with just one selector, whereas
administratively distributed organizations may choose to manage disparate selectors and key pairsin
different regions or on different email servers.

Beyond administrative convenience, selectors make it possible to seamlessly replace public keys
on aroutine basis. If adomain wishes to change from using a public key associated with selector
"january2005" to a public key associated with selector "february2005”, it merely makes sure that
both public keys are advertised in the public-key repository concurrently for the transition period
during which email may bein transit prior to verification. At the start of the transition period, the
outbound email servers are configured to sign with the "february2005" private key. At the end of the
transition period, the "january2005" public key is removed from the public-key repository.
INFORMATIVE NOTE: A key may aso be revoked as described below. The distinction
between revoking and removing a key selector record is subtle. When phasing out keys as
described above, a signing domain would probably simply remove the key record after the
transition period. However, asigning domain could elect to revoke the key (but maintain the
key record) for afurther period. There is no defined semantic difference between arevoked key
and aremoved key.

Allman, et al. Standards Track [Page 10]

RFC 4871 DKIM Signatures May 2007

3.2

While some domains may wish to make selector values well known, others will want to take care not
to allocate selector namesin away that allows harvesting of data by outside parties. For example, if
per-user keys are issued, the domain owner will need to make the decision as to whether to associate
this selector directly with the user name, or make it some unassociated random value, such asa
fingerprint of the public key.
INFORMATIVE OPERATIONS NOTE: Reusing a selector with anew key (for example,
changing the key associated with a user's name) makes it impossible to tell the difference
between amessage that didn't verify because the key is no longer valid versus amessage that is
actually forged. For thisreason, signers are ill-advised to reuse selectors for new keys. A better
strategy isto assigh new keysto new selectors.

Tag=Value Lists

DKIM uses asimple "tag=value" syntax in several contexts, including in messages and domain
signature records.

Values are a series of strings containing either plain text, base64 text (as defined in [RFC2045],
Section 6.8), gqp- sect i on (ibid, Section 6.7), or dki m quot ed- pri nt abl e (asdefined in
Section 2.6). The name of the tag will determine the encoding of each value. Unencoded semicolon
(";") characters MUST NOT occur in the tag value, since that separates tag-specs.

INFORMATIVE IMPLEMENTATION NOTE: Although the "plain text" defined below (as

t ag- val ue) only includes 7-bit characters, an implementation that wished to anticipate future

standards would be advised not to preclude the use of UTF8-encoded text in tag=value lists.

Formally, the syntax rules are as follows:

tag-list = tag-spec O*(";" tag-spec) [";"]
tag-spec = [FWB] tag-nane [FWS] "=" [FWE] tag-val ue [FW5]
tag-name = ALPHA 0* ALNUMPUNC
tag-value = [tval O0*(1*(WBP / FWS5) tval)]
; WBP and FW5 prohibited at begi nning and
end
tval = 1*VALCHAR
VALCHAR = W%&21-3A / W%3C7E
; EXCLAMATI ON to TI LDE except SEM COLON
ALNUMPUNC = ALPHA / DT/ "_"

Note that WSP is allowed anywhere around tags. In particular, any WSP after the "=" and any WSP
before the terminating ";" is not part of the value; however, WSP inside the value is significant.

Tags MUST beinterpreted in a case-sensitive manner. Vaues MUST be processed as case sensitive
unless the specific tag description of semantics specifies case insensitivity.

Tags with duplicate names MUST NOT occur within asingle tag-list; if atag name does occur more
than once, the entire tag-list isinvalid.

Whitespace within avalue MUST be retained unless explicitly excluded by the specific tag
description.

Tag=value pairs that represent the default value MAY be included to aid legibility.
Unrecognized tags MUST beignored.

Allman, et al. Standards Track [Page 11]

RFC 4871 DKIM Signatures May 2007

Tags that have an empty value are not the same as omitted tags. An omitted tag is treated as having
the default value; atag with an empty value explicitly designates the empty string as the value. For
example, "g=" does not mean "g=*", even though "g=*" is the default for that tag.

3.3 Signing and Verification Algorithms

DKIM supports multiple digital signature algorithms. Two algorithms are defined by this
specification at thistime: rsa-shal and rsa-sha256. The rsa-sha256 algorithm is the default if no
algorithmis specified. Verifiers MUST implement both rsa-shal and rsa-sha256. Signers MUST
implement and SHOULD sign using rsa-sha256.
INFORMATIVE NOTE: Although sha256 is strongly encouraged, some senders of
low-security messages (such as routine newsletters) may prefer to use shal because of reduced
CPU requirements to compute a shal hash. In general, sha256 should always be used whenever
possible.

3.3.1 Thersa-shal Signing Algorithm

Thersa-shal Signing Algorithm computes a message hash as described in Section 3.7 below using
SHA-1 [FIPS.180-2.2002] as the hash-alg. That hash is then signed by the signer using the RSA
algorithm (defined in PKCS#1 version 1.5 [RFC3447]) as the crypt-alg and the signer's private key.
The hash MUST NOT be truncated or converted into any form other than the native binary form
before being signed. The signing algorithm SHOULD use a public exponent of 65537.

3.3.2 The rsa-sha256 Signing Algorithm

The rsa-sha256 Signing Algorithm computes a message hash as described in Section 3.7 below using
SHA-256 [FIPS.180-2.2002] as the hash-alg. That hash is then signed by the signer using the RSA
algorithm (defined in PKCS#1 version 1.5 [RFC3447]) as the crypt-alg and the signer's private key.
The hash MUST NOT be truncated or converted into any form other than the native binary form
before being signed.

3.3.3 Key Sizes

Selecting appropriate key sizesis atrade-off between cost, performance, and risk. Since short RSA
keys more easily succumb to off-line attacks, signers MUST use RSA keys of at least 1024 bits for
long-lived keys. Verifiers MUST be able to validate signatures with keys ranging from 512 bitsto
2048 bits, and they MAY be able to validate signatures with larger keys. Verifier policies may use
the length of the signing key as one metric for determining whether a signature is acceptable.
Factors that should influence the key size choice include the following:

e Thepractical constraint that large (e.g., 4096 bit) keys may not fit within a 512-byte DNS UDP
response packet

» The security constraint that keys smaller than 1024 bits are subject to off-line attacks
e Larger keysimpose higher CPU costs to verify and sign email
» Keyscan bereplaced on aregular basis, thus their lifetime can be relatively short

e The security goals of this specification are modest compared to typical goals of other systems
that employ digital signatures

See [RFC3766] for further discussion on selecting key sizes.

Allman, et al. Standards Track [Page 12]

RFC 4871 DKIM Signatures May 2007

3.3.4 Other Algorithms

Other agorithms MAY be defined in the future. Verifiers MUST ignore any signatures using
algorithms that they do not implement.

3.4 Canonicalization

Empirical evidence demonstrates that some mail servers and relay systems modify email in transit,
potentially invalidating a signature. There are two competing perspectives on such modifications.
For most signers, mild modification of email isimmaterial to the authentication status of the email.
For such signers, a canonicalization algorithm that survives modest in-transit modification is
preferred.

Other signers demand that any modification of the email, however minor, result in asignature
verification failure. These signers prefer a canonicalization algorithm that does not tolerate in-transit
modification of the signed email.

Some signers may be willing to accept modifications to header fields that are within the bounds of
email standards such as [RFC2822], but are unwilling to accept any modification to the body of
messages.

To satisfy all requirements, two canonicalization algorithms are defined for each of the header and
the body: a"simple" agorithm that tolerates almost no modification and a "relaxed" algorithm

that tolerates common modifications such as whitespace replacement and header field line
rewrapping. A signer MAY specify either algorithm for header or body when signing an email. If no
canonicalization algorithm is specified by the signer, the "simple" algorithm defaults for both header
and body. Verifiers MUST implement both canonicalization algorithms. Note that the header and
body may use different canonicalization algorithms. Further canonicalization algorithms MAY be
defined in the future; verifiers MUST ignore any signatures that use unrecognized canonicalization
algorithms.

Canonicalization ssimply prepares the email for presentation to the signing or verification algorithm.
It MUST NOT change the transmitted data in any way. Canonicalization of header fields and body
are described below.

NOTE: This section assumes that the message is already in "network normal” format (text is ASCII
encoded, lines are separated with CRLF characters, etc.). See also Section 5.3 for information about
normalizing the message.

3.4.1 The "simple" Header Canonicalization Algorithm

The"simple" header canonicalization algorithm does not change header fieldsin any way. Header
fields MUST be presented to the signing or verification algorithm exactly asthey arein the
message being signed or verified. In particular, header field names MUST NOT be case folded and
whitespace MUST NOT be changed.

3.4.2 The "relaxed" Header Canonicalization Algorithm

The "relaxed" header canonicalization algorithm MUST apply the following stepsin order:

o Convert al header field names (not the header field values) to lowercase. For example, convert
"SUBJect: AbC" to "subject: AbC".

* Unfold all header field continuation lines as described in [RFC2822]; in particular, lines with
terminators embedded in continued header field values (that is, CRLF sequences followed by

Allman, et al. Standards Track [Page 13]

RFC 4871 DKIM Signatures May 2007

WSP) MUST be interpreted without the CRLF. Implementations MUST NOT remove the CRLF
at the end of the header field value.

e Convert all sequences of one or more WSP characters to asingle SP character. WSP characters
here include those before and after aline folding boundary.

» Delete all WSP characters at the end of each unfolded header field value.

* Deéete any WSP characters remaining before and after the colon separating the header field name
from the header field value. The colon separator MUST be retained.

3.4.3 The "simple" Body Canonicalization Algorithm

The"simple" body canonicalization algorithm ignores al empty lines at the end of the message
body. An empty lineisaline of zero length after removal of the line terminator. If thereisno
body or no trailing CRLF on the message body, a CRLF is added. It makes no other changesto
the message body. In more formal terms, the "simple" body canonicalization algorithm converts
"0*CRLF" at the end of the body to asingle "CRLF".

Note that a completely empty or missing body is canonicalized asasingle "CRLF"; that is, the
canonicalized length will be 2 octets.

3.4.4 The "relaxed" Body Canonicalization Algorithm

The "relaxed" body canonicalization algorithm:

» Ignores all whitespace at the end of lines. Implementations MUST NOT remove the CRLF at the
end of theline.

e Reduces al sequences of WSP within alineto a single SP character.
* Ignoresall empty lines at the end of the message body. "Empty line" is defined in Section 3.4.3.

INFORMATIVE NOTE: It should be noted that the relaxed body canonicalization algorithm
may enable certain types of extremely crude "ASCII Art" attacks where a message may be
conveyed by adjusting the spacing between words. If thisis a concern, the "simple" body
canonicalization algorithm should be used instead.

3.4.5 Body Length Limits

A body length count MAY be specified to limit the signature calculation to an initial prefix of the
body text, measured in octets. If the body length count is not specified, the entire message body is
signed.
INFORMATIVE RATIONALE: This capability is provided because it is very common for
mailing lists to add trailers to messages (e.g., instructions how to get off the list). Until those
messages are a so signed, the body length count is a useful tool for the verifier sinceit may asa
matter of policy accept messages having valid signatures with extraneous data.

INFORMATIVE IMPLEMENTATION NOTE: Using body length limits enables an attack
in which an attacker modifies a message to include content that solely benefits the attacker.

It is possible for the appended content to completely replace the original content in the end
recipient's eyes and to defeat duplicate message detection algorithms. To avoid this attack,
signers should be wary of using thistag, and verifiers might wish to ignore the tag or remove
text that appears after the specified content length, perhaps based on other criteria.

The body length count allows the signer of a message to permit data to be appended to the end
of the body of a signed message. The body length count MUST be calculated following the
canonicalization algorithm; for example, any whitespace ignored by a canonicalization algorithm is

Allman, et al. Standards Track [Page 14]

RFC 4871 DKIM Signatures May 2007

not included as part of the body length count. Signers of MIME messages that include a body length
count SHOULD be sure that the length extends to the closing MIME boundary string.

INFORMATIVE IMPLEMENTATION NOTE: A signer wishing to ensure that the only
acceptable modifications are to add to the MIME postlude would use a body length count
encompassing the entire final MIME boundary string, including the final "--CRLF". A signer
wishing to allow additional MIME parts but not maodification of existing parts would use a body
length count extending through the final MIME boundary string, omitting the final "--CRLF".
Note that this only works for some MIME types, e.g., multipart/mixed but not multipart/signed.

A body length count of zero means that the body is completely unsigned.

Signers wishing to ensure that no modification of any sort can occur should specify the "simple”
canonicalization algorithm for both header and body and omit the body Iength count.

3.4.6 Canonicalization Examples (INFORMATIVE)

In the following examples, actual whitespace is used only for clarity. The actual input and output
text is designated using bracketed descriptors: "<SP>" for a space character, "<HTAB>" for atab
character, and "<CRLF>" for a carriage-return/line-feed sequence. For example, "X <SP> Y" and
"X<SP>Y" represent the same three characters.

Example 1: A message reading:

A <SP> X <CRLF>

B <SP> : <SP> Y <HTAB><CRLF>
<HTAB> Z <SP><SP><CRLF>
<CRLF>

<SP> C <SP><CRLF>

D <SP><HTAB><SP> E <CRLF>
<CRLF>

<CRLF>

when canonicalized using relaxed canonicalization for both header and body results in a header
reading:
a: X <CRLF>
b: Y <SP> Z <CRLF>
and a body reading:
<SP> C <CRLF>
D <SP> E <CRLF>
Example 2: The same message canonicalized using simple canonicalization for both header and body

resultsin a header reading:

A <SP> X <CRLF>
B <SP> : <SP> Y <HTAB><CRLF>
<HTAB> Z <SP><SP><CRLF>

Allman, et a. Standards Track [Page 15]

RFC 4871 DKIM Signatures May 2007

and a body reading:

<SP> C <SP><CRLF>
D <SP><HTAB><SP> E <CRLF>

Example 3: When processed using relaxed header canonicalization and simple body
canonicalization, the canonicalized version has a header of:

a: X <CRLF>
b: Y <SP> Z <CRLF>

and a body reading:

<SP> C <SP><CRLF>
D <SP><HTAB><SP> E <CRLF>

3.5 The DKIM-Signature Header Field

The signature of the email is stored in the DKIM-Signature header field. This header field contains
all of the signature and key-fetching data. The DKIM-Signature value is atag-list as described in
Section 3.2.

The DKIM-Signature header field SHOULD be treated as though it were atrace header field as
defined in Section 3.6 of [RFC2822], and hence SHOULD NOT be reordered and SHOULD be
prepended to the message.

The DKIM-Signature header field being created or verified is always included in the signature
calculation, after the rest of the header fields being signed; however, when calculating or verifying
the signature, the value of the "b=" tag (signature value) of that DKIM-Signature header field MUST
be treated as though it were an empty string. Unknown tags in the DKIM-Signature header field
MUST be included in the signature calculation but MUST be otherwise ignored by verifiers. Other
DKIM-Signature header fields that are included in the signature should be treated as normal header
fields; in particular, the "b=" tag is not treated specially.

The encodings for each field type are listed below. Tags described as gp-section are encoded

as described in Section 6.7 of MIME Part One [RFC2045], with the additional conversion of
semicolon charactersto "=3B"; intuitively, thisis one line of quoted-printable encoded text. The
dkim-quoted-printable syntax is defined in Section 2.6.

Tags on the DKIM-Signature header field along with their type and requirement status are shown
below. Unrecognized tags MUST be ignored.

V= Version (MUST beincluded). This tag defines the version of this specification that applies
to the signature record. It MUST have the value "1". Note that verifiers must do a string
comparison on this value; for example, "1" is not the same as"1.0".

ABNF:
sig-v-tag = 976 [FW8] "=" [FW§] "1"

INFORMATIVE NOTE: DKIM-Signature version numbers are expected to increase
arithmetically as new versions of this specification are released.

Allman, et al. Standards Track [Page 16]

RFC 4871

bh=

Allman, et al.

DKIM Signatures May 2007

The agorithm used to generate the signature (plain-text; REQUIRED). Verifiers MUST
support "rsa-shal" and "rsa-sha256"; sighers SHOULD sign using "rsa-sha256". See
Section 3.3 for a description of agorithms.

ABNF:
sig-a-tag = %61 [FW5] "=" [FWS] sig-a-tag-alg
sig-a-tag-alg = sig-a-tag-k "-" sig-a-tag-h
sig-a-tag-k = "rsa" |/ x-sig-a-tag-k
sig-a-tag-h = "shal" / "sha256" / x-sig-a-tag-h
X-sig-a-tag-k = ALPHA *(ALPHA / DIGT) ; for later
ext ensi on
X-sig-a-tag-h = ALPHA *(ALPHA / DIGT) ; for later
ext ensi on

The signature data (base64; REQUIRED). Whitespace isignored in this value and MUST

be ignored when reassembling the original signature. In particular, the signing process can
safely insert FWSin thisvaluein arbitrary places to conform to line-length limits. See Signer
Actions (Section 5) for how the signature is computed.

ABNF:

si g-b-tag
si g-b-tag-data

62 [FW5] "="
base64stri ng

[FWE] sig-b-tag-data

The hash of the canonicalized body part of the message as limited by the "1=" tag (base64;
REQUIRED). Whitespace isignored in this value and MUST be ignored when reassembling
the original signature. In particular, the signing process can safely insert FAVSin this value
in arbitrary placesto conform to line-length limits. See Section 3.7 for how the body hash is
computed.

ABNF:

si g-bh-tag =
si g-bh-tag-data
si g-bh-tag-data =

Y62 Y68 [FWS] "=" [FWg]

base64stri ng

Message canonicalization (plain-text; OPTIONAL, default is"simple/simple”). This

tag informs the verifier of the type of canonicalization used to prepare the message for
signing. It consists of two names separated by a"slash” (%d47) character, corresponding
to the header and body canonicalization algorithms respectively. These algorithms are
described in Section 3.4. If only one algorithm is named, that algorithm is used for the
header and "simple" is used for the body. For example, "c=relaxed" is treated the same as
"c=relaxed/simple”.

ABNF:
sig-c-tag = %63 [FWE] "=" [FWH] sig-c-tag-alg
["/" sig-c-tag-alg]
sig-c-tag-alg = "sinmple” / "relaxed" /

X-sig-c-tag-alg
X-sig-c-tag-alg
ext ensi on

= hyphenat ed- word ; for later

Standards Track [Page 17]

RFC 4871

Allman, et al.

DKIM Signatures May 2007

The domain of the signing entity (plain-text; REQUIRED). Thisisthe domain that will be
gueried for the public key. Thisdomain MUST be the same as or a parent domain of the "i="
tag (the signing identity, as described below), or it MUST meet the requirements for parent
domain signing described in Section 3.8. When presented with a signature that does not meet
these requirement, verifiers MUST consider the signature invalid.

Internationalized domain names MUST be encoded as described in [RFC3490].
ABNF.

sig-d-tag %64 [FW5] "=" [FW5] dommi n- name
domai n- nane sub-domain 1*("." sub-domain)
; from RFC 2821 Domai n, but excl udi ng
address-literal

Signed header fields (plain-text, but see description; REQUIRED). A colon-separated list
of header field names that identify the header fields presented to the signing algorithm. The
field MUST contain the complete list of header fields in the order presented to the signing
agorithm. Thefield MAY contain names of header fields that do not exist when signed;
nonexistent header fields do not contribute to the signature computation (that is, they are
treated as the null input, including the header field name, the separating colon, the header
field value, and any CRLF terminator). The field MUST NOT include the DKIM-Signature
header field that is being created or verified, but may include others. Folding whitespace
(FWS) MAY beincluded on either side of the colon separator. Header field names MUST
be compared against actual header field names in a case-insensitive manner. Thislist MUST
NOT be empty. See Section 5.4 for adiscussion of choosing header fields to sign.

ABNF:

sig-h-tag = %68 [FWS] "=" [FWS] hdr-nane
o*(*FWs ":" *FW5 hdr-nane)
hdr - nane = field-nanme

INFORMATIVE EXPLANATION: By "signing" header fields that do not actually
exist, asigner can prevent insertion of those header fields before verification. However,
since asigner cannot possibly know what header fields might be created in the future,
and that some MUAs might present header fields that are embedded inside a message
(e.g., as amessage/rfc822 content type), the security of this solution is not total.
INFORMATIVE EXPLANATION: The exclusion of the header field name and colon
aswell asthe header field value for non-existent header fields prevents an attacker from
inserting an actual header field with anull value.

Identity of the user or agent (e.g., amailing list manager) on behalf of which this message

is signed (dkim-quoted-printable; OPTIONAL, default is an empty Local-part followed by

an"@" followed by the domain from the "d=" tag). The syntax is a standard email address

where the Local-part MAY be omitted. The domain part of the address MUST be the same as

or a subdomain of the value of the "d=" tag.

Internationalized domain names MUST be converted using the steps listed in Section 4 of

[RFC3490] using the TOASCI | function.

ABNF:

sig-i-tag = 69 [FW5] "=" [FW5] [Local -part] "@
domai n- nane

Standards Track [Page 18]

RFC 4871 DKIM Signatures May 2007

INFORMATIVE NOTE: Theloca-part of the "i=" tag is optional because in some
cases a signer may not be able to establish a verified individual identity. In such cases,
the signer may wish to assert that although it iswilling to go as far as signing for the
domain, it is unable or unwilling to commit to an individua user name within their
domain. It can do so by including the domain part but not the local-part of the identity.

INFORMATIVE DISCUSSION: This document does not require the value of the

"i=" tag to match the identity in any message header fields. Thisis considered to be a
verifier policy issue. Constraints between the value of the "i=" tag and other identities
in other header fields seek to apply basic authentication into the semantics of trust
associated with arole such as content author. Trust is a broad and complex topic and
trust mechanisms are subject to highly creative attacks. The real-world efficacy of

any but the most basic bindings between the "i=" value and other identitiesis not well
established, nor isits vulnerability to subversion by an attacker. Hence reliance on the
use of these options should be strictly limited. In particular, it isnot at all clear to what
extent atypical end-user recipient can rely on any assurances that might be made by
successful use of the "i=" options.

= Body length count (plain-text unsigned decimal integer; OPTIONAL, default is entire
body). This tag informs the verifier of the number of octets in the body of the email after
canonicalization included in the cryptographic hash, starting from 0 immediately following
the CRLF preceding the body. Thisvalue MUST NOT be larger than the actual number of
octets in the canonicalized message body.

INFORMATIVE IMPLEMENTATION WARNING: Use of the"I=" tag might allow
display of fraudulent content without appropriate warning to end users. The "I=" tag
isintended for increasing signature robustness when sending to mailing lists that both
modify their content and do not sign their messages. However, using the "1=" tag
enabl es attacks in which an intermediary with malicious intent modifies a message

to include content that solely benefits the attacker. It is possible for the appended
content to completely replace the original content in the end recipient's eyes and to
defeat duplicate message detection algorithms. Examples are described in Security
Considerations (Section 8). To avoid this attack, signers should be extremely wary of
using this tag, and verifiers might wish to ignore the tag or remove text that appears
after the specified content length.

INFORMATIVE NOTE: The value of the "|=" tag is constrained to 76 decimal

digits. This constraint is not intended to predict the size of future messages or to

require implementations to use an integer representation large enough to represent

the maximum possible value, but isintended to remind the implementer to check the
length of this and all other tags during verification and to test for integer overflow when
decoding the value. Implementers may need to limit the actual value expressed to a
value smaller than 10776, e.g., to allow amessage to fit within the available storage
space.

ABNF:
sig-l-tag = 9%6c [FWS] "=" [FWE] 1*76DIG T

g= A colon-separated list of query methods used to retrieve the public key (plain-text;
OPTIONAL, default is"dng/txt"). Each query method is of the form "type[/options]”, where
the syntax and semantics of the options depend on the type and specified options. If there are
multiple query mechanisms listed, the choice of query mechanism MUST NOT change the

Allman, et al. Standards Track [Page 19]

RFC 4871

Allman, et al.

DKIM Signatures May 2007

interpretation of the signature. Implementations MUST use the recognized query mechanisms
in the order presented.

Currently, the only valid value is "dng/txt", which defines the DNS TXT record lookup
algorithm described elsewhere in this document. The only option defined for the "dns' query
typeis"txt", which MUST beincluded. Verifiers and signers MUST support "dng/txt".

ABNF:

sig-g-tag = 71 [FW5] "=" [FW\g]
si g-g-tag- net hod
*([FWs] ":" [FWB] sig-g-tag-nethod)
sig-g-tag-method = "dns/txt" / x-sig-qg-tag-type
["/" Xx-sig-Q-tag-args]
X-sig-g-tag-type = hyphenated-word ; for future
ext ensi on
X-Sig-g-tag-args = qp- hdr-val ue

The selector subdividing the namespace for the "d=" (domain) tag (plain-text; REQUIRED).
ABNF:

sig-s-tag = 73 [FW5] "=" [FW5] selector

Signature Timestamp (plain-text unsigned decimal integer; RECOMMENDED, default isan
unknown creation time). The time that this signature was created. The format is the number
of seconds since 00:00:00 on January 1, 1970 in the UTC time zone. The value is expressed
as an unsigned integer in decimal ASCII. Thisvalueis not constrained to fit into a 31- or
32-bit integer. Implementations SHOULD be prepared to handle values up to at least 10M12
(until approximately AD 200,000; this fitsinto 40 bits). To avoid denial-of-service attacks,
implementations MAY consider any value longer than 12 digits to be infinite. Leap seconds
are not counted. Implementations MAY ignore signatures that have atimestamp in the future.

ABNF:
sig-t-tag = 974 [FW] "=" [FW§] 1*12DIG T

Signature Expiration (plain-text unsigned decimal integer; RECOMMENDED, default isno
expiration). The format is the same asin the "t=" tag, represented as an absol ute date, not

as atime delta from the signing timestamp. The value is expressed as an unsigned integer

in decimal ASCII, with the same constraints on the value in the "t=" tag. Signatures MAY
be considered invalid if the verification time at the verifier is past the expiration date. The
verification time should be the time that the message was first received at the administrative
domain of the verifier if that timeisreliably available; otherwise the current time should be
used. The value of the "x="tag MUST be greater than the value of the "t=" tag if both are
present.

INFORMATIVE NOTE: The"x=" tag is not intended as an anti-replay defense.
ABNF.
si g-x-tag = 078 [FWB] "=" [FWB] 1*12DIGA T

Copied header fields (dkim-quoted-printable, but see description; OPTIONAL, default is
null). A vertical-bar-separated list of selected header fields present when the message was
signed, including both the field name and value. It is not required to include all header fields

Standards Track [Page 20]

RFC 4871 DKIM Signatures May 2007

present at the time of signing. This field need not contain the same header fields listed in the
"h="tag. The header field text itself must encode the vertical bar ("|", %x7C) character (i.e.,
vertical barsin the "z=" text are metacharacters, and any actual vertical bar charactersin a
copied header field must be encoded). Note that all whitespace must be encoded, including
whitespace between the colon and the header field value. After encoding, FWS MAY be
added at arbitrary locations in order to avoid excessively long lines; such whitespace isNOT
part of the value of the header field, and MUST be removed before decoding.

The header fields referenced by the "h=" tag refer to the fields in the RFC 2822 header of
the message, not to any copied fieldsin the "z=" tag. Copied header field values are for
diagnostic use.

Header fields with characters requiring conversion (perhaps from legacy MTAs that are
not [RFC2822] compliant) SHOULD be converted as described in MIME Part Three

[RFC2047].
ABNF:
sig-z-tag = O&T7A [FW5] "=" [FWB] sig-z-tag-copy
*([FWB] "|" sig-z-tag-copy)
sig-z-tag-copy = hdr-nanme ":" qp-hdr-val ue
gp- hdr - val ue = dki m quot ed- pri ntabl e ; wWith "|" encoded

INFORMATIVE EXAMPLE of asignature header field spread across multiple continuation
lines:

DKI Mt Si gnat ure: a=r sa-sha256; d=exanpl e. net; s=brishane
c=sinpl e; g=dns/txt; i=@ng.exanple. net;
t=1117574938; x=1118006938
h=from t 0: subj ect : dat e;
z=From f oo@ng. exanpl e. net | To: j oe@xanpl e. coni
Subj ect : denmp=20r un| Dat e: Jul y=205, =202005=203: 44: 08=20PM=20- 0700
bh=MT| zNDU2Nz g5 MDEy Mz QLNj c4OTAXM MONTY3ODKWMTI =;
b=dzdVWy O AKCALXdJOc9G2g8LoXS| Eni Shav+yuU4zGeer uD00I szZ
VoGAAZHRN YzR

3.6 Key Management and Representation

Signature applications require some level of assurance that the verification public key is associated
with the claimed signer. Many applications achieve this by using public key certificates issued by
atrusted third party. However, DKIM can achieve a sufficient level of security, with significantly
enhanced scalability, by simply having the verifier query the purported signer's DNS entry (or some
security-equivalent) in order to retrieve the public key.

DKIM keys can potentially be stored in multiple types of key servers and in multiple formats. The
storage and format of keys are irrelevant to the remainder of the DKIM algorithm.

Parameters to the key lookup agorithm are the type of the lookup (the "g=" tag), the domain of the
signer (the "d=" tag of the DKIM-Signature header field), and the selector (the "s=" tag).

public_key = dki mfind_key(q_val, d_val, s_val)

This document defines a single binding, using DNS TXT records to distribute the keys. Other
bindings may be defined in the future.

Allman, et al. Standards Track [Page 21]

RFC 4871

DKIM Signatures May 2007

3.6.1 Textual Representation

It is expected that many key serverswill choose to present the keysin an otherwise unstructured
text format (for example, an XML form would not be considered to be unstructured text for this
purpose). The following definition MUST be used for any DKIM key represented in an otherwise

unstr

uctured textual form.

The overall syntax is atag-list as described in Section 3.2. The current valid tags are described
below. Other tags MAY be present and MUST be ignored by any implementation that does not
understand them.

V=

Allman, et al.

Version of the DKIM key record (plain-text; RECOMMENDED, default is"DKIM1"). If
specified, thistag MUST be set to "DKIM1" (without the quotes). Thistag MUST be the first

Note that verifiers must do a string comparison on this value; for example, "DKIM1" is not the
same as"DKIM1.0".
ABNF:

key-v-tag = 976 [FWS] "=" [FWS] "DKI ML"

Granularity of the key (plain-text; OPTIONAL, default is"*"). This value MUST match the
Local-part of the "i=" tag of the DKIM-Signature header field (or its default value of the empty
string if "i="is not specified), with asingle, optional "*" character matching a sequence of zero
or more arbitrary characters ("wildcarding”). An email with a signing address that does not
match the value of thistag constitutes afailed verification. The intent of thistag isto constrain
which signing address can legitimately use this selector, for example, when delegating a key

to athird party that should only be used for special purposes. Wildcarding allows matching for
addresses such as "user+*" or "*-offer". An empty "g=" value never matches any addresses.

ABNF:

key-g-tag
key-g-tag-| part

Acceptable hash algorithms (plain-text; OPTIONAL, defaults to alowing all algorithms). A
colon-separated list of hash algorithms that might be used. Signers and Verifiers MUST support
the "sha256" hash algorithm. Verifiers MUST also support the "shal" hash algorithm.

ABNF.

%67 [FW5] "=" [FW5] key-g-tag-Ipart
[dot-atomtext] ["*" [dot-atomtext]]

key-h-tag = %68 [FW5] "=" [FW5] key-h-tag-alg

o*([FWB] ":" [FWB] key-h-tag-alg)
key-h-tag-alg = "shal" / "sha256" / x-key-h-tag-alg
x- key-h-tag-al g = hyphenat ed- word ; for future

ext ensi on

Key type (plain-text; OPTIONAL, default is"rsa"). Signers and verifiers MUST support the
"rsa’ key type. The "rsa" key type indicates that an ASN.1 DER-encoded [1TU.X660.1997]
RSAPublicKkey [RFC3447] (see Sections 3.1 and A.1.1) is being used in the "p="tag. (Note:
the "p=" tag further encodes the value using the base64 algorithm.)

ABNF.

Standards Track [Page 22]

RFC 4871

Allman, et al.

DKIM Signatures May 2007

key-k-tag = 76 [FW5] "=" [FWE] key-k-tag-type
key-k-tag-type = "rsa" / x-key-k-tag-type
x- key-k-tag-type = hyphenat ed-word ; for future

ext ensi on

Notes that might be of interest to a human (gp-section; OPTIONAL, default is empty). No
interpretation is made by any program. This tag should be used sparingly in any key server
mechanism that has space limitations (notably DNS). Thisisintended for use by administrators,
not end users.

ABNF:
key-n-tag = U%6e [FW5] "=" [FWS] gp-section

Public-key data (base64; REQUIRED). An empty value means that this public key has been
revoked. The syntax and semantics of this tag value before being encoded in base64 are defined
by the "k=" tag.
INFORMATIVE RATIONALE: If aprivate key has been compromised or otherwise
disabled (e.g., an outsourcing contract has been terminated), a signer might want to
explicitly state that it knows about the selector, but all messages using that selector should
fail verification. Verifiers should ignore any DKIM-Signature header fields with a selector
referencing arevoked key.

ABNF:
key-p-tag = %70 [FWS] "=" [[FW5] base64string]

INFORMATIVE NOTE: A base64string is permitted to include white space (FWS) at
arbitrary places, however, any CRLFs must be followed by at least one WSP character.
Implementors and administrators are cautioned to ensure that selector TXT records
conform to this specification.

Service Type (plain-text; OPTIONAL; default is"*"). A colon-separated list of service types

to which this record applies. Verifiers for a given service type MUST ignore this record if the

appropriate type is not listed. Currently defined service types are as follows:

* matches all service types

email electronic mail (not necessarily limited to SMTP)

Thistag isintended to constrain the use of keysfor other purposes, should use of DKIM be
defined by other servicesin the future.

ABNF:
key-s-tag = %73 [FW5] "=" [FWE] key-s-tag-type
O*([FWB] ":" [FWB] key-s-tag-type)
key-s-tag-type = "email" / "*" | x-Kkey-s-tag-type
x-key-s-tag-type = hyphenat ed-word ; for future
ext ensi on

Flags, represented as a colon-separated list of names (plain-text; OPTIONAL, default is no

flags set). The defined flags are as follows:

y Thisdomainistesting DKIM. Verifiers MUST NOT treat messages from signersin testing
mode differently from unsigned email, even should the signature fail to verify. Verifiers
MAY wish to track testing mode results to assist the signer.

Standards Track [Page 23]

RFC 4871 DKIM Signatures May 2007

s Any DKIM-Signature header fields using the "i=" tag MUST have the same domain value on
the right-hand side of the "@" in the "i=" tag and the value of the "d="tag. That is, the "i="
domain MUST NOT be a subdomain of "d=". Use of thisflagis RECOMMENDED unless
subdomaining is required.

ABNF:
key-t-tag = W74 [FW] "=" [FW5] key-t-tag-flag
O*([FW] ":" [FWB] key-t-tag-flag)
key-t-tag-flag ="y" | "s" | x-key-t-tag-flag
x-key-t-tag-flag = hyphenat ed-word ; for future
ext ensi on

Unrecognized flags MUST beignored.

3.6.2 DNS Binding

A binding using DNS TXT records as akey service is hereby defined. All implementations MUST
support this binding.

3.6.2.1 Namespace

All DKIM keys are stored in a subdomain named _donai nkey. Given a DKIM-Signature field
with a"d=" tag of exanpl e. comand an "s=" tag of f 00. bar , the DNS query will be for
f 0oo. bar. _donai nkey. exanpl e. com
INFORMATIVE OPERATIONAL NOTE: Wildcard DNS records (e.g.,
* bar._domainkey.example.com) do not make sense in this context and should not be used.
Note also that wildcards within domains (e.g., s._domainkey.* .example.com) are not supported
by the DNS.

3.6.2.2 Resource Record Types for Key Storage

3.7

The DNS Resource Record type used is specified by an option to the query-type ("g=") tag. The only
option defined in this base specification is "txt", indicating the use of a TXT Resource Record (RR).
A later extension of this standard may define another RR type.

Stringsin aTXT RR MUST be concatenated together before use with no intervening whitespace.
TXT RRs MUST be unique for a particular selector name; that is, if there are multiple recordsin an
RRset, the results are undefined.

TXT RRs are encoded as described in Section 3.6.1.

Computing the Message Hashes

Both signing and verifying message signatures start with a step of computing two cryptographic
hashes over the message. Signers will choose the parameters of the signature as described in Signer
Actions (Section 5); verifierswill use the parameters specified in the DKIM-Signature header

field being verified. In the following discussion, the names of the tags in the DKIM-Signature
header field that either exists (when verifying) or will be created (when signing) are used. Note that
canonicalization (Section 3.4) isonly used to prepare the email for signing or verifying; it does not
affect the transmitted email in any way.

The signer/verifier MUST compute two hashes, one over the body of the message and one over the
selected header fields of the message. Signers MUST compute them in the order shown. Verifiers

Allman, et al. Standards Track [Page 24]

RFC 4871 DKIM Signatures May 2007

MAY compute them in any order convenient to the verifier, provided that the result is semantically
identical to the semantics that would be the case had they been computed in this order.

In hash step 1, the signer/verifier MUST hash the message body, canonicalized using the body
canonicalization algorithm specified in the "c=" tag and then truncated to the length specified in the
"|="tag. That hash value is then converted to base64 form and inserted into (signers) or compared to
(verifiers) the "bh=" tag of the DKIM-Signature header field.

In hash step 2, the signer/verifier MUST pass the following to the hash algorithm in the indicated
order.

1. Theheader fields specified by the "h="tag, in the order specified in that tag, and canonicalized
using the header canonicalization algorithm specified in the "c=" tag. Each header field MUST
be terminated with asingle CRLF.

2. The DKIM-Signature header field that exists (verifying) or will be inserted (signing) in the
message, with the value of the "b=" tag deleted (i.e., treated as the empty string), canonicalized
using the header canonicalization algorithm specified in the "c=" tag, and without atrailing
CRLF.

All tags and their values in the DKIM-Signature header field are included in the cryptographic hash
with the sole exception of the value portion of the "b=" (signature) tag, which MUST be treated as
the null string. All tags MUST be included even if they might not be understood by the verifier. The
header field MUST be presented to the hash algorithm after the body of the message rather than with
therest of the header fields and MUST be canonicalized as specified in the "c=" (canonicalization)
tag. The DKIM-Signature header field MUST NOT beincluded in its own h= tag, although other
DKIM-Signature header fields MAY be signed (see Section 4).

When cal culating the hash on messages that will be transmitted using base64 or quoted-printable
encoding, signers MUST compute the hash after the encoding. Likewise, the verifier MUST
incorporate the values into the hash before decoding the base64 or quoted-printable text. However,
the hash MUST be computed before transport level encodings such as SMTP "dot-stuffing” (the

modification of lines beginning with a"." to avoid confusion with the SM TP end-of-message
marker, as specified in [RFC2821]).

With the exception of the canonicalization procedure described in Section 3.4, the DKIM signing
process treats the body of messages as ssimply a string of octets. DKIM messages MAY be either
in plain-text or in MIME format; no special treatment is afforded to MIME content. Message
attachmentsin MIME format MUST be included in the content that is signed.

More formally, the algorithm for the signature is as follows:

body- hash = hash-al g(canon_body)
header - hash = hash- al g(canon_header || DKIM SI G
signature = sig-al g(header-hash, key)

where si g- al g isthe signature algorithm specified by the "a=" tag, hash- al g isthe hash
algorithm specified by the "a=" tag, canon_header and canon_body are the canonicalized
message header and body (respectively) as defined in Section 3.4 (excluding the DKIM-Signature
header field), and DKI M SI Gis the canonicalized DKIM-Signature header field sans the signature
valueitsalf, but with body- hash included as the "bh=" tag.
INFORMATIVE IMPLEMENTERS NOTE: Many digital signature APIs provide both hashing
and application of the RSA private key using asingle si gn() primitive. When using such

Allman, et al. Standards Track [Page 25]

RFC 4871 DKIM Signatures May 2007

an API, the last two stepsin the algorithm would probably be combined into asingle call that
would perform both the hash- al g and thesi g- al g.

3.8 Signing by Parent Domains

In some circumstances, it is desirable for adomain to apply a signature on behalf of any of its
subdomains without the need to maintain separate selectors (key records) in each subdomain. By
default, private keys corresponding to key records can be used to sign messages for any subdomain
of the domain in which they reside; e.g., akey record for the domain example.com can be used to
verify messages where the signing identity ("i=" tag of the signature) is sub.example.com, or even
subl.sub2.example.com. In order to limit the capahility of such keyswhen thisis not intended, the
s flag may be set in the "t=" tag of the key record to constrain the validity of the record to exactly
the domain of the signing identity. If the referenced key record containsthe s flag as part of the "t="
tag, the domain of the signing identity ("i=" flag) MUST be the same as that of the d= domain. If this
flag is absent, the domain of the signing identity MUST be the same as, or a subdomain of, the d=
domain. Key records that are not intended for use with subdomains SHOULD specify the s flagin
the "t=" tag.

Allman, et al. Standards Track [Page 26]

RFC 4871 DKIM Signatures May 2007

4. Semantics of Multiple Signatures

4.1 Example Scenarios

There are many reasons why a message might have multiple signatures. For example, a given signer
might sign multiple times, perhaps with different hashing or signing algorithms during a transition
phase.

INFORMATIVE EXAMPLE: Suppose SHA-256 isin the future found to be insufficiently
strong, and DKIM usage transitions to SHA-1024. A signer might immediately sign using

the newer algorithm, but continue to sign using the older algorithm for interoperability with
verifiers that had not yet upgraded. The signer would do this by adding two DKIM-Signature
header fields, one using each algorithm. Older verifiersthat did not recognize SHA-1024 as
an acceptable algorithm would skip that signature and use the older algorithm; newer verifiers
could use either signature at their option, and all other things being equal might not even
attempt to verify the other signature.

Similarly, asigner might sign a message including all headers and no "I=" tag (to satisfy strict
verifiers) and a second time with alimited set of headers and an "'I=" tag (in anticipation of possible
message modifications in route to other verifiers). Verifiers could then choose which signature they
preferred.

INFORMATIVE EXAMPLE: A verifier might receive a message with two signatures, one
covering more of the message than the other. If the signature covering more of the message
verified, then the verifier could make one set of policy decisions; if that signature failed but the
signature covering less of the message verified, the verifier might make a different set of policy
decisions.

Of course, a message might also have multiple signatures because it passed through multiple signers.
A common case is expected to be that of a signed message that passes through a mailing list that also
signs all messages. Assuming both of those signatures verify, arecipient might choose to accept the
message if either of those signatures were known to come from trusted sources.

INFORMATIVE EXAMPLE: Recipients might choose to whitelist mailing lists to which they
have subscribed and that have acceptable anti-abuse policies so as to accept messages sent to
that list even from unknown authors. They might also subscribe to less trusted mailing lists
(e.g., those without anti-abuse protection) and be willing to accept all messages from specific
authors, but insist on doing additional abuse scanning for other messages.

Another related example of multiple signers might be forwarding services, such as those commonly
associated with academic alumni sites.
INFORMATIVE EXAMPLE: A recipient might have an address at members.example.org,
asite that has anti-abuse protection that is somewhat less effective than the recipient would
prefer. Such arecipient might have specific authors whose messages would be trusted
absolutely, but messages from unknown authors that had passed the forwarder's scrutiny would
have only medium trust.

4.2 Interpretation

A signer that is adding a signature to a message merely creates a new DKIM-Signature header,
using the usual semantics of the h=option. A signer MAY sign previously existing DKIM-Signature
header fields using the method described in Section 5.4 to sign trace header fields.

Allman, et al. Standards Track [Page 27]

RFC 4871 DKIM Signatures May 2007

INFORMATIVE NOTE: Signers should be cognizant that signing DKIM-Signature

header fields may result in signature failures with intermediaries that do not recognize that
DKIM-Signature header fields are trace header fields and unwittingly reorder them, thus
breaking such signatures. For this reason, signing existing DKIM-Signature header fieldsis
unadvised, albeit legal.

INFORMATIVE NOTE: If aheader field with multiple instances is signed, those header

fields are always signed from the bottom up. Thus, it is not possible to sign only specific
DKIM-Signature header fields. For example, if the message being signed already contains three
DKIM-Signature header fields A, B, and C, it is possible to sign all of them, B and C only, or C
only, but not A only, B only, A and B only, or A and C only.

A signer MAY add more than one DKIM-Signature header field using different parameters. For
example, during atransition period a signer might want to produce signatures using two different
hash algorithms.

Signers SHOUL D NOT remove any DKIM-Signature header fields from messages they are signing,
even if they know that the signatures cannot be verified.

When evaluating a message with multiple signatures, a verifier SHOULD evaluate signatures
independently and on their own merits. For example, a verifier that by policy chooses not to accept
signatures with deprecated cryptographic algorithms would consider such signaturesinvalid.
Verifiers MAY process signatures in any order of their choice; for example, some verifiers might
choose to process signatures corresponding to the From field in the message header before other
signatures. See Section 6.1 for more information about signature choices.
INFORMATIVE IMPLEMENTATION NOTE: Verifier attemptsto correlate valid signatures
with invalid signatures in an attempt to guess why a signature failed areill-advised. In
particular, there is no general way that averifier can determine that an invalid signature was
ever valid.

Verifiers SHOULD ignore failed signatures as though they were not present in the message.
Verifiers SHOULD continue to check signatures until a signature successfully verifiesto the
satisfaction of the verifier. To limit potential denial-of-service attacks, verifiers MAY limit the total
number of signatures they will attempt to verify.

Allman, et al. Standards Track [Page 28]

RFC 4871 DKIM Signatures May 2007

5. Signer Actions

The following steps are performed in order by signers.

5.1 Determine Whether the Email Should Be Signed and by Whom

A signer can obvioudly only sign email for domains for which it has a private key and the necessary
knowledge of the corresponding public key and selector information. However, there are a number
of other reasons beyond the lack of a private key why a signer could choose not to sign an email.

INFORMATIVE NOTE: Signing modules may be incorporated into any portion of the mail
system as deemed appropriate, including an MUA, a SUBMISSION server, or an MTA.
Wherever implemented, signers should beware of signing (and thereby asserting responsibility
for) messages that may be problematic. In particular, within atrusted enclave the signing
address might be derived from the header according to local policy; SUBMISSION servers
might only sign messages from users that are properly authenticated and authorized.

INFORMATIVE IMPLEMENTER ADVICE: SUBMISSION servers should not sign Received
header fieldsif the outgoing gateway MTA obfuscates Received header fields, for example, to
hide the details of internal topology.

If an email cannot be signed for some reason, it isalocal policy decision asto what to do with that
email.

5.2 Select a Private Key and Corresponding Selector Information

This specification does not define the basis by which a signer should choose which private key

and selector information to use. Currently, al selectors are equal asfar asthis specificationis
concerned, so the decision should largely be a matter of administrative convenience. Distribution and
management of private keysis also outside the scope of this document.

INFORMATIVE OPERATIONS ADVICE: A signer should not sign with a private key when
the selector containing the corresponding public key is expected to be revoked or removed
before the verifier has an opportunity to validate the signature. The signer should anticipate that
verifiers may choose to defer validation, perhaps until the message is actually read by the fina
recipient. In particular, when rotating to a new key pair, signing should immediately commence
with the new private key and the old public key should be retained for a reasonable validation
interval before being removed from the key server.

5.3 Normalize the Message to Prevent Transport Conversions

Some messages, particularly those using 8-bit characters, are subject to modification during

transit, notably conversion to 7-bit form. Such conversions will break DKIM signatures. In order

to minimize the chances of such breakage, signers SHOULD convert the message to a suitable
MIME content transfer encoding such as quoted-printable or base64 as described in MIME Part
One [RFC2045] before signing. Such conversion is outside the scope of DKIM; the actual message
SHOULD be converted to 7-bit MIME by an MUA or MSA prior to presentation to the DKIM
algorithm.

If the message is submitted to the signer with any local encoding that will be modified before
transmission, that modification to canonical [RFC2822] form MUST be done before signing. In
particular, bare CR or LF characters (used by some systems as alocal line separator convention)
MUST be converted to the SMTP-standard CRL F sequence before the message is signed. Any

Allman, et al. Standards Track [Page 29]

RFC 4871 DKIM Signatures May 2007

5.4

conversion of this sort SHOULD be applied to the message actually sent to the recipient(s), not just
to the version presented to the signing algorithm.

More generally, the signer MUST sign the message as it is expected to be received by the verifier
rather than in some local or internal form.

Determine the Header Fields to Sign

The From header field MUST be signed (that is, included in the "h=" tag of the resulting
DKIM-Signature header field). Signers SHOULD NOT sign an existing header field likely to be
legitimately modified or removed in transit. In particular, [RFC2821] explicitly permits modification
or removal of the Return-Path header field in transit. Signers MAY include any other header fields
present at the time of signing at the discretion of the signer.
INFORMATIVE OPERATIONS NOTE: The choice of which header fieldsto signis
non-obvious. One strategy isto sign al existing, non-repeatable header fields. An alternative
strategy isto sign only header fields that are likely to be displayed to or otherwise be likely
to affect the processing of the message at the receiver. A third strategy isto sign only "well
known" headers. Note that verifiers may treat unsigned header fields with extreme skepticism,
including refusing to display them to the end user or even ignoring the signature if it does not
cover certain header fields. For this reason, signing fields present in the message such as Date,
Subject, Reply-To, Sender, and all MIME header fields are highly advised.

The DKIM-Signature header field is always implicitly signed and MUST NOT beincluded in the
"h=" tag except to indicate that other preexisting signatures are also signed.

Signers MAY claim to have signed header fields that do not exist (that is, signers MAY include

computing the signature, the non-existing header field MUST be treated as the null string (including
the header field name, header field value, all punctuation, and the trailing CRLF).

INFORMATIVE RATIONALE: Thisalows signersto explicitly assert the absence of a header
field; if that header field is added later the signature will fail.

INFORMATIVE NOTE: A header field name need only be listed once more than the actual
number of that header field in a message at the time of signing in order to prevent any further
additions. For example, if thereis a single Comments header field at the time of signing, listing

Signers choosing to sign an existing header field that occurs more than once in the message (such as
Received) MUST sign the physically last instance of that header field in the header block. Signers
wishing to sign multiple instances of such a header field MUST include the header field name
multiple times in the h= tag of the DKIM-Signature header field, and MUST sign such header

fields in order from the bottom of the header field block to the top. The signer MAY include more
instances of a header field name in h=than there are actual corresponding header fieldsto indicate
that additional header fields of that name SHOULD NOT be added.

INFORMATIVE EXAMPLE:

If the signer wishes to sign two existing Received header fields, and the existing header
contains:

Allman, et al. Standards Track [Page 30]

RFC 4871 DKIM Signatures May 2007

5.5

Recei ved: <A>
Recei ved:
Recei ved: <C

then the resulting DKIM-Signature header field should read:
DKI M Si gnature: ... h=Received : Received : ...
and Received header fields <C> and will be signed in that order.

Signers should be careful of signing header fields that might have additional instances added later
in the delivery process, since such header fields might be inserted after the signed instance or
otherwise reordered. Trace header fields (such as Received) and Resent-* blocks are the only fields
prohibited by [RFC2822] from being reordered. In particular, since DKIM-Signature header fields
may be reordered by some intermediate MTAS, signing existing DKIM-Signature header fieldsis
error-prone.

INFORMATIVE ADMONITION: Despite the fact that [RFC2822] permits header fieldsto
be reordered (with the exception of Received header fields), reordering of signed header fields
with multiple instances by intermediate MTAs will cause DKIM signatures to be broken; such
anti-social behavior should be avoided.

INFORMATIVE IMPLEMENTER'S NOTE: Although not required by this specification, all
end-user visible header fields should be signed to avoid possible "indirect spamming". For
example, if the Subject header field is not signed, a spammer can resend a previously signed
mail, replacing the legitimate subject with a one-line spam.

Recommended Signature Content

In order to maximize compatibility with avariety of verifiers, it isrecommended that signers

follow the practices outlined in this section when signing a message. However, these are generic
recommendations applying to the general case; specific senders may wish to modify these guidelines
as required by their unique situations. Verifiers MUST be capable of verifying signatures even if

one or more of the recommended header fields is not signed (with the exception of From, which
must always be signed) or if one or more of the disrecommended header fieldsis signed. Note that
verifiers do have the option of ignoring signatures that do not cover a sufficient portion of the header
or body, just as they may ignore signatures from an identity they do not trust.

The following header fields SHOULD be included in the signature, if they are present in the message
being signed:

e From (REQUIRED in al signatures)

e Sender, Reply-To

* Subject
e Date, Message-I1D
e To,Cc

* MIME-Version

« Content-Type, Content-Transfer-Encoding, Content-1D, Content-Description

* Resent-Date, Resent-From, Resent-Sender, Resent-To, Resent-Cc, Resent-Message-1D

¢ In-Reply-To, References

» List-1d, List-Help, List-Unsubscribe, List-Subscribe, List-Post, List-Owner, List-Archive

The following header fields SHOULD NOT beincluded in the signature:

Allman, et al. Standards Track [Page 31]

RFC 4871 DKIM Signatures May 2007

* Return-Path

e Received

» Comments, Keywords
* Bcc, Resent-Bee

* DKIM-Signature

Optional header fields (those hot mentioned above) normally SHOULD NOT beincluded in the
signature, because of the potential for additional header fields of the same name to be legitimately
added or reordered prior to verification. There are likely to be legitimate exceptionsto this rule,
because of the wide variety of application-specific header fields that may be applied to a message,
some of which are unlikely to be duplicated, modified, or reordered.

Signers SHOULD choose canonicalization algorithms based on the types of messages they process
and their aversion to risk. For example, e-commerce sites sending primarily purchase receipts, which
are not expected to be processed by mailing lists or other software likely to modify messages, will
generally prefer "simple" canonicalization. Sites sending primarily person-to-person email will likely
prefer to be more resilient to modification during transport by using "relaxed" canonicalization.

Signers SHOULD NOT use "I=" unless they intend to accommodate intermediate mail processors
that append text to a message. For example, many mailing list processors append "unsubscribe”

existing at the time of signing in computing the count. In particular, signers SHOULD NOT specify
abody length of 0 since this may be interpreted as a meaningless signature by some verifiers.

5.6 Compute the Message Hash and Signature

The signer MUST compute the message hash as described in Section 3.7 and then sign it using the
selected public-key agorithm. Thiswill result in a DKIM-Signature header field that will include
the body hash and a signature of the header hash, where that header includes the DKIM-Signature
header field itself.

Entities such as mailing list managers that implement DKIM and that modify the message or a
header field (for example, inserting unsubscribe information) before retransmitting the message
SHOULD check any existing signature on input and MUST make such modifications before
re-signing the message.

Thesigner MAY elect to limit the number of bytes of the body that will be included in the hash and
header field.

5.7 Insert the DKIM-Signature Header Field

Finally, the signer MUST insert the DKIM-Signature header field created in the previous step prior
to transmitting the email. The DKIM-Signature header field MUST be the same as used to compute
the hash as described above, except that the value of the "b="tag MUST be the appropriately signed
hash computed in the previous step, signed using the algorithm specified in the "a=" tag of the
DKIM-Signature header field and using the private key corresponding to the selector given in the
"s=" tag of the DKIM-Signature header field, as chosen above in Section 5.2

The DKIM-Signature header field MUST be inserted before any other DKIM-Signature fieldsin the
header block.

Allman, et al. Standards Track [Page 32]

RFC 4871 DKIM Signatures May 2007

INFORMATIVE IMPLEMENTATION NOTE: The easiest way to achieve thisisto insert
the DKIM-Signature header field at the beginning of the header block. In particular, it
may be placed before any existing Received header fields. Thisis consistent with treating
DKIM-Signature as a trace header field.

Allman, et al. Standards Track [Page 33]

RFC 4871 DKIM Signatures May 2007

6. Verifier Actions

6.1

Since asigner MAY remove or revoke a public key at any time, it is recommended that verification
occur in atimely manner. In many configurations, the most timely place is during acceptance by the
border MTA or shortly thereafter. In particular, deferring verification until the message is accessed
by the end user is discouraged.

A border or intermediate MTA MAY verify the message signature(s). An MTA who has performed
verification MAY communicate the result of that verification by adding a verification header field
to incoming messages. This considerably simplifies things for the user, who can now use an existing
mail user agent. Most MUAS have the ability to filter messages based on message header fields or
content; these filters would be used to implement whatever policy the user wishes with respect to
unsigned mail.

A verifying MTA MAY implement a policy with respect to unverifiable mail, regardless of whether
or not it applies the verification header field to signed messages.

Verifiers MUST produce aresult that is semantically equivalent to applying the following stepsin
the order listed. In practice, several of these steps can be performed in parallel in order to improve
performance.

Extract Signhatures from the Message

The order in which verifiers try DKIM-Signature header fieldsis not defined; verifiers MAY try
signaturesin any order they like. For example, one implementation might try the signaturesin
textual order, whereas another might try signatures by identities that match the contents of the From
header field before before trying other signatures. Verifiers MUST NOT attribute ultimate meaning
to the order of multiple DKIM-Signature header fields. In particular, there is reason to believe that
some relays will reorder the header fields in potentially arbitrary ways.

INFORMATIVE IMPLEMENTATION NOTE: Verifiers might use the order as a clue to
signing order in the absence of any other information. However, other clues as to the semantics
of multiple signatures (such as correlating the signing host with Received header fields) may
also be considered.

A verifier SHOULD NOT treat a message that has one or more bad signatures and no good
signatures differently from a message with no signature at all; such treatment is a matter of local
policy and is beyond the scope of this document.

When a signature successfully verifies, a verifier will either stop processing or attempt to verify
any other signatures, at the discretion of the implementation. A verifier MAY limit the number of
signatures it tries to avoid denial-of-service attacks.

INFORMATIVE NOTE: An attacker could send messages with large numbers of faulty
signatures, each of which would require a DNS lookup and corresponding CPU time to verify
the message. This could be an attack on the domain that receives the message, by slowing down
the verifier by requiring it to do alarge number of DNS lookups and/or signature verifications.
It could also be an attack against the domains listed in the signatures, essentially by enlisting
innocent verifiersin launching an attack against the DNS servers of the actual victim.

In the following description, text reading "return status (explanation)" (where "status' is one of
"PERMFAIL" or "TEMPFAIL") means that the verifier MUST immediately cease processing that
signature. The verifier SHOULD proceed to the next signature, if any is present, and completely
ignore the bad signature. If the status is "PERMFAIL", the signature failed and should not be

Allman, et al. Standards Track [Page 34]

RFC 4871 DKIM Signatures May 2007

reconsidered. If the statusis"TEMPFAIL", the signature could not be verified at this time but

may betried again later. A verifier MAY either defer the message for later processing, perhaps by
gueueing it locally or issuing a451/4.7.5 SMTP reply, or try another signature; if no good signature
isfound and any of the signatures resulted in a TEMPFAIL status, the verifier MAY savethe
message for later processing. The "(explanation)” is not normative text; it is provided solely for
clarification.

Verifiers SHOULD ignore any DKIM-Signature header fields where the signature does not validate.
Verifiersthat are prepared to validate multiple signature header fields SHOULD proceed to the next
signature header field, should it exist. However, verifiers MAY make note of the fact that an invalid
signature was present for consideration at alater step.
INFORMATIVE NOTE: The rationale of this requirement is to permit messages that have
invalid signatures but also avalid signature to work. For example, amailing list exploder
might opt to leave the original submitter signature in place even though the exploder knows
that it is modifying the message in some way that will break that signature, and the exploder
insertsits own signature. In this case, the message should succeed even in the presence of the
known-broken signature.

For each signature to be validated, the following steps should be performed in such a manner asto
produce a result that is semantically equivaent to performing them in the indicated order.

6.1.1 Validate the Signature Header Field

Implementers MUST meticulously validate the format and values in the DKIM-Signature header
field; any inconsistency or unexpected values MUST cause the header field to be completely ignored
and the verifier to return PERMFAIL (signature syntax error). Being "liberal in what you accept"

is definitely abad strategy in this security context. Note however that this does not include the
existence of unknown tags in a DKIM-Signature header field, which are explicitly permitted.

Verifiers MUST ignore DKIM-Signature header fields with a"v=" tag that is inconsistent with this
specification and return PERMFAIL (incompatible version).
INFORMATIVE IMPLEMENTATION NOTE: An implementation may, of course, choose to
aso verify signatures generated by older versions of this specification.

If any tag listed as "required” in Section 3.5 is omitted from the DK1M-Signature header field, the
verifier MUST ignore the DKIM-Signature header field and return PERMFAIL (signature missing
required tag).
INFORMATIONAL NOTE: Thetags listed asrequired in Section 3.5 arev=, a=, b=, bh=,
d=, h=, and s=. Should there be a conflict between this note and Section 3.5, Section 3.5 is
normative.

If the DKIM-Signature header field does not contain the "i=" tag, the verifier MUST behave as
though the value of that tag were "@d", where "d" is the value from the "d=" tag.

Verifiers MUST confirm that the domain specified in the "d=" tag is the same as or a parent domain
of the domain part of the"i=" tag. If not, the DKIM-Signature header field MUST beignored and the
verifier should return PERMFAIL (domain mismatch).

If the "h=" tag does not include the From header field, the verifier MUST ignore the
DKIM-Signature header field and return PERMFAIL (From field not signed).

Verifiers MAY ignore the DKIM-Signature header field and return PERMFAIL (signature expired)
if it contains an "x=" tag and the signature has expired.

Allman, et al. Standards Track [Page 35]

RFC 4871 DKIM Signatures May 2007

Verifiers MAY ignore the DKIM-Signature header field if the domain used by the signer in the "d="
tag is not associated with avalid signing entity. For example, signatures with "d=" values such as
"com" and "co.uk" may beignored. Thelist of unacceptable domains SHOULD be configurable.

Verifiers MAY ignore the DKIM-Signature header field and return PERMFAIL (unacceptable
signature header) for any other reason, for example, if the signature does not sign header fields that
the verifier views to be essential. Asacase in point, if MIME header fields are not signed, certain
attacks may be possible that the verifier would prefer to avoid.

6.1.2 Get the Public Key

The public key for a signature is needed to complete the verification process. The process

of retrieving the public key depends on the query type as defined by the "g=" tag in the
DKIM-Signature header field. Obviously, a public key need only be retrieved if the process of
extracting the signature information is compl etely successful. Details of key management and
representation are described in Section 3.6. The verifier MUST validate the key record and MUST
ignore any public key records that are malformed.

When validating a message, a verifier MUST perform the following stepsin a manner that is
semantically the same as performing them in the order indicated (in some cases, the implementation
may parallelize or reorder these steps, as long as the semantics remain unchanged):

1. Retrievethe public key as described in Section 3.6 using the algorithm in the "g=" tag, the
domain from the "d=" tag, and the selector from the "s=" tag.

2. |If the query for the public key failsto respond, the verifier MAY defer acceptance of this email
and return TEMPFAIL (key unavailable). If verification is occurring during the incoming SMTP
session, thisMAY be achieved with a451/4.7.5 SMTP reply code. Alternatively, the verifier
MAY store the message in the local queue for later trial or ignore the signature. Note that storing
amessage in the local queue is subject to denial-of-service attacks.

3. If the query for the public key fails because the corresponding key record does not exist, the
verifier MUST immediately return PERMFAIL (no key for signature).

4. 1f the query for the public key returns multiple key records, the verifier may choose one of the
key records or may cycle through the key records performing the remainder of these steps on
each record at the discretion of the implementer. The order of the key records is unspecified.
If the verifier chooses to cycle through the key records, then the "return ..." wording in the
remainder of this section means "try the next key record, if any; if none, return to try another
signature in the usual way".

5. If theresult returned from the query does not adhere to the format defined in this specification,
the verifier MUST ignore the key record and return PERMFAIL (key syntax error). Verifiers are
urged to validate the syntax of key records carefully to avoid attempted attacks. In particular, the
verifier MUST ignore keys with aversion code ("v=" tag) that they do not implement.

6. If the"g="tag in the public key does not match the Local-part of the "i=" tag in the message
signature header field, the verifier MUST ignore the key record and return PERMFAIL
(inapplicable key). If the Local-part of the "i=" tag on the message signature is not present,
the "g=" tag must be "*" (valid for all addresses in the domain) or the entire g= tag must be
omitted (which defaultsto "g=*"), otherwise the verifier MUST ignore the key record and return
PERMFAIL (inapplicable key). Other than this test, verifiers SHOULD NOT treat a message
signed with akey record having a"g=" tag any differently than one without; in particular,
verifiers SHOULD NOT prefer messages that seem to have an individual signature by virtue of a
"g=" tag versus adomain signature.

Allman, et al. Standards Track [Page 36]

RFC 4871 DKIM Signatures May 2007

7. If the"h="tag existsin the public key record and the hash algorithm implied by the a= tag in the
DKIM-Signature header field is not included in the contents of the "h=" tag, the verifier MUST
ignore the key record and return PERMFAIL (inappropriate hash algorithm).

8. If the public key data (the "p=" tag) is empty, then this key has been revoked and the verifier
MUST treat this as afailed signature check and return PERMFAIL (key revoked). Thereisno
defined semantic difference between a key that has been revoked and a key record that has been
removed.

9. If the public key datais not suitable for use with the algorithm and key types defined by the
"a=" and "k="tags in the DKIM-Signature header field, the verifier MUST immediately return
PERMFAIL (inappropriate key algorithm).

6.1.3 Compute the Verification

Given asigner and a public key, verifying a signature consists of actions semantically equivalent to

the following steps.

1. Based on the algorithm defined in the "c=" tag, the body length specified in the "I=" tag, and
the header field namesin the "h=" tag, prepare a canonicalized version of the message asis
described in Section 3.7 (note that this version does not actually need to be instantiated). When

MUST be case-insensitive.

2. Based on the algorithm indicated in the "a=" tag, compute the message hashes from the canonical
copy as described in Section 3.7.

3. Verify that the hash of the canonicalized message body computed in the previous step matches
the hash value conveyed in the "bh=" tag. If the hash does not match, the verifier SHOULD
ignore the signature and return PERMFAIL (body hash did not verify).

the mechanism appropriate for the public key algorithm described in the "a=" tag. If the signature
does not validate, the verifier SHOULD ignore the signature and return PERMFAIL (signature
did not verify).

5. Otherwise, the signature has correctly verified.

INFORMATIVE IMPLEMENTER'S NOTE: Implementations might wish to initiate the
public-key query in parallel with calculating the hash as the public key is not needed until the
final decryption is calculated. Implementations may also verify the signature on the message
header before validating that the message hash listed in the "bh=" tag in the DKIM-Signature
header field matches that of the actual message body; however, if the body hash does not
match, the entire signature must be considered to have failed.

A body length specified in the "I=" tag of the signature limits the number of bytes of the body passed
to the verification algorithm. All data beyond that limit is not validated by DKIM. Hence, verifiers
might treat a message that contains bytes beyond the indicated body length with suspicion, such
as by truncating the message at the indicated body length, declaring the signature invalid (e.g.,
by returning PERMFAIL (unsigned content)), or conveying the partial verification to the policy
module.
INFORMATIVE IMPLEMENTATION NOTE: Verifiers that truncate the body at the indicated
body length might pass on a malformed MIME message if the signer used the "N-4" trick
(omitting the final "--CRLF") described in the informative note in (Section 3.4.5). Such
verifiers may wish to check for this case and include atrailing "--CRLF" to avoid breaking the
MIME structure. A simple way to achieve this might be to append "--CRLF" to any "multipart”

Allman, et al. Standards Track [Page 37]

RFC 4871 DKIM Signatures May 2007

message with a body length; if the MIME structure is already correctly formed, this will appear
in the postlude and will not be displayed to the end user.

6.2 Communicate Verification Results

Verifiers wishing to communicate the results of verification to other parts of the mail system may
do so in whatever manner they see fit. For example, implementations might choose to add an email
header field to the message before passing it on. Any such header field SHOULD be inserted before
any existing DKIM-Signature or preexisting authentication status header fields in the header field
block.

INFORMATIVE ADVICE to MUA filter writers: Patterns intended to search for results header
fields to visibly mark authenticated mail for end users should verify that such header field was
added by the appropriate verifying domain and that the verified identity matches the author
identity that will be displayed by the MUA. In particular, MUA filters should not be influenced
by bogus results header fields added by attackers. To circumvent this attack, verifiers may wish
to delete existing results header fields after verification and before adding a new header field.

6.3 Interpret Results/Apply Local Policy

It is beyond the scope of this specification to describe what actions a verifier system should make,
but an authenticated email presents an opportunity to areceiving system that unauthenticated
email cannot. Specifically, an authenticated email creates a predictable identifier by which other
decisions can reliably be managed, such as trust and reputation. Conversely, unauthenticated email
lacks areliable identifier that can be used to assign trust and reputation. It is reasonable to treat
unauthenticated email as lacking any trust and having no positive reputation.

In general, verifiers SHOULD NOT reject messages solely on the basis of alack of signature or an
unverifiable signature; such rejection would cause severe interoperability problems. However, if
the verifier does opt to reject such messages (for example, when communicating with a peer who,
by prior agreement, agrees to only send signed messages), and the verifier runs synchronously with
the SMTP session and a signature is missing or does not verify, the MTA SHOULD use a 550/5.7.x
reply code.

If it is not possible to fetch the public key, perhaps because the key server is not available, a
temporary failure message MAY be generated using a451/4.7.5 reply code, such as:

451 4.7.5 Unable to verify signature - key server unavailable

Temporary failures such asinability to access the key server or other external service are the
only conditions that SHOULD use a4xx SMTP reply code. In particular, cryptographic signature
verification failures MUST NOT return 4xx SMTP replies.

Once the signature has been verified, that information MUST be conveyed to higher-level systems
(such as explicit allow/whitelists and reputation systems) and/or to the end user. If the messageis
signed on behalf of any address other than that in the From: header field, the mail system SHOULD
take pains to ensure that the actual signing identity is clear to the reader.

The verifier MAY treat unsigned header fields with extreme skepticism, including marking them as
untrusted or even deleting them before display to the end user.

While the symptoms of afailed verification are obvious — the signature doesn't verify —
establishing the exact cause can be more difficult. If a selector cannot be found, is that because
the selector has been removed, or was the value changed somehow in transit? If the signature
lineismissing, isthat because it was never there, or was it removed by an overzealous filter? For

Allman, et al. Standards Track [Page 38]

RFC 4871 DKIM Signatures May 2007

diagnostic purposes, the exact reason why the verification fails SHOULD be made available to
the policy module and possibly recorded in the system logs. If the email cannot be verified, then it
SHOULD be rendered the same as all unverified email regardless of whether or not it looks like it
was signed.

Allman, et al. Standards Track [Page 39]

RFC 4871

DKIM Signatures

7. IANA Considerations

DKIM introduces some new namespaces that have been registered with IANA. In al cases, new
values are assigned only for values that have been documented in a published RFC that has IETF
Consensus [RFC2434].

7.1 DKIM-Signature Tag Specifications

May 2007

A DKIM-Signature provides for alist of tag specifications. IANA has established the
DKIM-Signature Tag Specification Registry for tag specifications that can be used in
DKIM-Signature fields.

Theinitial entriesin the registry comprise:

TYPE REFERENCE
v (this document)
a (this document)
b (this document)
bh (this document)
c (this document)
d (this document)
h (this document)
i (this document)
I (this document)
q (this document)
S (this document)
t (this document)
X (this document)
z (this document)

7.2 DKIM-Signature Query Method Registry

The"g="

Table 1: DKIM-Signature Tag Specification Registry Initial Vaues

tag-spec (specified in Section 3.5) provides for alist of query methods.

IANA has established the DKIM-Signature Query Method Registry for mechanisms that can be used
to retrieve the key that will permit validation processing of a message signed using DKIM.

The initial entry in the registry comprises:

TYPE

OPTION

REFERENCE

dns

txt

(this document)

Table 2: DKIM-Signature Query Method Registry Initial Vaues

7.3 DKIM-Signature Canonicalization Registry

The"c="

for the header and body of the message.

IANA has established the DKIM-Signature Canonicalization Algorithm Registry for algorithms for
converting a message into a canonical form before signing or verifying using DKIM.

Allman, et al.

Standards Track

tag-spec (specified in Section 3.5) provides for a specifier for canonicalization algorithms

[Page 40]

RFC 4871 DKIM Signatures May 2007

Theinitial entriesin the header registry comprise:

TYPE REFERENCE
simple (this document)
relaxed (this document)

Table 3: DKIM-Signature Header Canonicalization Algorithm Registry Initial Values

The initial entriesin the body registry comprise:

TYPE REFERENCE
simple (this document)
relaxed (this document)

Table 4: DKIM-Signature Body Canonicalization Algorithm Registry Initial Values

7.4 _domainkey DNS TXT Record Tag Specifications

A _domainkey DNS TXT record provides for alist of tag specifications. IANA has established the
DKIM _domainkey DNS TXT Tag Specification Registry for tag specifications that can be used in
DNS TXT Records.

Theinitial entriesin the registry comprise:

TYPE REFERENCE
(this document)
(this document)
(this document)
(this document)
(this document)
(this document)
(this document)
(this document)

FlIT|S|X|ToQ|I<

Table5: DKIM _domainkey DNS TXT Record Tag Specification Registry Initial Values

7.5 DKIM Key Type Registry
The"k=" <key-k-tag> (specified in Section 3.6.1) and the "a=" <sig-a-tag-k> (specified in
Section 3.5) tags provide for alist of mechanismsthat can be used to decode a DKIM signature.
IANA has established the DKIM Key Type Registry for such mechanisms.
Theinitial entry in the registry comprises:

TYPE REFERENCE

rsa [RFC3447]

Table 6: DKIM Key Type Initial Vaues

Allman, et al. Standards Track [Page 41]

RFC 4871 DKIM Signatures May 2007

7.6

7.7

7.8

DKIM Hash Algorithms Registry

The "h=" <key-h-tag> (specified in Section 3.6.1) and the "a=" <sig-a-tag-h> (specified in
Section 3.5) tags provide for alist of mechanisms that can be used to produce a digest of message
data.

IANA has established the DKIM Hash Algorithms Registry for such mechanisms.
The initial entriesin the registry comprise:

TYPE REFERENCE
shal [FIPS.180-2.2002]
sha256 [FIPS.180-2.2002]

Table 7: DKIM Hash Algorithms Initial Values

DKIM Service Types Registry

The"s=" <key-s-tag> tag (specified in Section 3.6.1) providesfor alist of service typesto which this
selector may apply.

IANA has established the DKIM Service Types Registry for service types.
The initial entriesin the registry comprise:

TYPE REFERENCE
email (this document)
* (this document)

Table 8: DKIM Service Types Registry Initial Values

DKIM Selector Flags Registry

The"t=" <key-t-tag> tag (specified in Section 3.6.1) providesfor alist of flags to modify
interpretation of the selector.

IANA has established the DKIM Selector Flags Registry for additional flags.
The initial entriesin the registry comprise:

TYPE REFERENCE
y (this document)
S (this document)

Table 9: DKIM Selector Flags Registry Initial Values

7.9 DKIM-Signature Header Field

IANA has added DKIM-Signature to the "Permanent Message Header Fields' registry (see
[RFC3864]) for the "mail" protocol, using this document as the reference.

Allman, et al. Standards Track [Page 42]

RFC 4871 DKIM Signatures May 2007

8. Security Considerations

It has been observed that any mechanism that is introduced that attempts to stem the flow of spam
is subject to intensive attack. DKIM needs to be carefully scrutinized to identify potential attack
vectors and the vulnerability to each. See a'so [RFC4686].

8.1 Misuse of Body Length Limits ("I=" Tag)
Body length limits (in the form of the "I=" tag) are subject to several potential attacks.

8.1.1 Addition of New MIME Parts to Multipart/*

If the body length limit does not cover a closing MIME multipart section (including the trailing

- - CRLF portion), then it is possible for an attacker to intercept a properly signed multipart message
and add a new body part. Depending on the details of the MIME type and the implementation of

the verifying MTA and the receiving MUA, this could alow an attacker to change the information
displayed to an end user from an apparently trusted source.

For example, if attackers can append informationto at ext / ht m body part, they may be able to
exploit abug in some MUAS that continue to read after a</ ht m > marker, and thus display HTML
text on top of already displayed text. If amessage hasanul ti part/al t er nati ve body part,
they might be able to add a new body part that is preferred by the displaying MUA.

8.1.2 Addition of new HTML content to existing content

Several receiving MUA implementations do not cease display after a"</ ht ml >" tag. In particular,
this allows attacks involving overlaying images on top of existing text.

INFORMATIVE EXAMPLE: Appending the following text to an existing, properly closed
message will in many MUAS result in inappropriate data being rendered on top of existing,
correct data:

<div style="position: relative; bottom 350px; z-index: 2;">
<img src="http://wwv.ietf.org/imges/ietflogo2e.qgif"

wi dt h=578 hei ght =370>
</ di v>

8.2 Misappropriated Private Key

If the private key for auser isresident on their computer and is not protected by an appropriately
secure mechanism, it is possible for malware to send mail asthat user and any other user sharing
the same private key. The malware would not, however, be able to generate signed spoofs of

other signers' addresses, which would aid in identification of the infected user and would limit the
possibilities for certain types of attacks involving socially engineered messages. This threat applies
mainly to MUA-based implementations; protection of private keys on servers can be easily achieved
through the use of specialized cryptographic hardware.

A larger problem occurs if malware on many users computers obtains the private keys for those
users and transmits them via a covert channel to a site where they can be shared. The compromised
users would likely not know of the misappropriation until they receive "bounce" messages from
messages they are purported to have sent. Many users might not understand the significance of these
bounce messages and would not take action.

One countermeasure is to use a user-entered passphrase to encrypt the private key, although users
tend to choose weak passphrases and often reuse them for different purposes, possibly allowing

Allman, et al. Standards Track [Page 43]

RFC 4871 DKIM Signatures May 2007

an attack against DKIM to be extended into other domains. Nevertheless, the decoded private key
might be briefly available to compromise by malware when it is entered, or might be discovered via
keystroke logging. The added complexity of entering a passphrase each time one sends a message
would also tend to discourage the use of a secure passphrase.

A somewhat more effective countermeasure is to send messages through an outgoing MTA that can
authenticate the submitter using existing techniques (e.g., SMTP Authentication), possibly validate
the message itself (e.g., verify that the header islegitimate and that the content passes a spam content
check), and sign the message using a key appropriate for the submitter address. Such an MTA can
also apply controls on the volume of outgoing mail each user is permitted to originate in order to
further limit the ability of malware to generate bulk email.

8.3 Key Server Denial-of-Service Attacks

Since the key servers are distributed (potentially separate for each domain), the number of servers
that would need to be attacked to defeat this mechanism on an Internet-wide basisis very large.
Nevertheless, key serversfor individual domains could be attacked, impeding the verification of
messages from that domain. Thisis not significantly different from the ability of an attacker to deny
service to the mail exchangers for a given domain, although it affects outgoing, not incoming, mail.

A variation on this attack isthat if avery large amount of mail were to be sent using spoofed
addresses from a given domain, the key servers for that domain could be overwhelmed with requests.
However, given the low overhead of verification compared with handling of the email message
itself, such an attack would be difficult to mount.

8.4 Attacks Against the DNS

Since the DNSisarequired binding for key services, specific attacks against the DNS must be
considered.

While the DNS is currently insecure [RFC3833], these security problems are the motivation behind
DNS Security (DNSSEC) [RFC4033], and all users of the DNSwill reap the benefit of that work.

DKIM isonly intended as a "sufficient” method of proving authenticity. It is not intended to provide
strong cryptographic proof about authorship or contents. Other technol ogies such as OpenPGP
[RFC2440] and SSMIME [RFC3851] address those requirements.

A second security issue related to the DNS revolves around the increased DNS traffic as a
consequence of fetching selector-based data as well as fetching signing domain policy. Widespread
deployment of DKIM will result in a significant increase in DNS queries to the claimed signing
domain. In the case of forgeries on alarge scale, DNS servers could see a substantial increasein
queries.

A specific DNS security issue that should be considered by DKIM verifiersis the name chaining
attack described in Section 2.3 of the DNS Threat Analysis [RFC3833]. A DKIM verifier, while
verifying a DKIM-Signature header field, could be prompted to retrieve a key record of an attacker's
choosing. Thisthreat can be minimized by ensuring that name servers, including recursive name
servers, used by the verifier enforce strict checking of "glue" and other additional information in
DNS responses and are therefore not vulnerable to this attack.

8.5 Replay Attacks

In this attack, a spammer sends a message to be spammed to an accomplice, which resultsin the
message being signed by the originating MTA. The accomplice resends the message, including

Allman, et al. Standards Track [Page 44]

RFC 4871 DKIM Signatures May 2007

the original signature, to alarge number of recipients, possibly by sending the message to many
compromised machines that act as MTAs. The messages, not having been modified by the
accomplice, have valid signatures.

Partial solutionsto this problem involve the use of reputation services to convey the fact that the
specific email address is being used for spam and that messages from that signer are likely to be
spam. This requires a real -time detection mechanism in order to react quickly enough. However,
such measures might be prone to abuse, if for example an attacker resent alarge number of messages
received from avictim in order to make them appear to be a spammer.

Large verifiers might be able to detect unusually large volumes of mails with the same signaturein a
short time period. Smaller verifiers can get substantially the same volume of information via existing
collaborative systems.

8.6 Limits on Revoking Keys

When alarge domain detects undesirable behavior on the part of one of its users, it might wish to
revoke the key used to sign that user's messages in order to disavow responsibility for messages
that have not yet been verified or that are the subject of areplay attack. However, the ability of the
domain to do so can be limited if the same key, for scalability reasons, is used to sign messages
for many other users. Mechanisms for explicitly revoking keys on a per-address basis have been
proposed but require further study as to their utility and the DNS load they represent.

8.7 Intentionally Malformed Key Records

Itis possible for an attacker to publish key recordsin DNS that are intentionally malformed, with
the intent of causing a denial-of-service attack on a non-robust verifier implementation. The attacker
could then cause a verifier to read the malformed key record by sending a message to one of its
users referencing the malformed record in a (not necessarily valid) signature. Verifiers MUST
thoroughly verify all key records retrieved from the DNS and be robust against intentionally as well
as unintentionally malformed key records.

8.8 Intentionally Malformed DKIM-Signature Header Fields
Verifiers MUST be prepared to receive messages with malformed DKIM-Signature header fields,
and thoroughly verify the header field before depending on any of its contents.

8.9 Information Leakage

An attacker could determine when a particular signature was verified by using a per-message
selector and then monitoring their DNS traffic for the key lookup. This would act as the equivalent
of a"web bug" for verification time rather than when the message was read.

8.10 Remote Timing Attacks

In some cases, it may be possible to extract private keys using aremote timing attack [BONEHO3].
Implementations should consider obfuscating the timing to prevent such attacks.

8.11 Reordered Header Fields

Existing standards allow intermediate MTAs to reorder header fields. If a signer signstwo or more
header fields of the same name, this can cause spurious verification errors on otherwise legitimate

Allman, et al. Standards Track [Page 45]

RFC 4871 DKIM Signatures May 2007

messages. In particular, signersthat sign any existing DKIM-Signature fields run the risk of having
messages incorrectly fail to verify.

8.12 RSA Attacks

An attacker could create alarge RSA signing key with a small exponent, thus requiring that the
verification key have alarge exponent. Thiswill force verifiers to use considerable computing
resources to verify the signature. Verifiers might avoid this attack by refusing to verify signatures
that reference selectors with public keys having unreasonable exponents.

In general, an attacker might try to overwhelm averifier by flooding it with messages requiring
verification. Thisis similar to other MTA denial-of-service attacks and should be dealt within a
similar fashion.

8.13 Inappropriate Signing by Parent Domains

The trust relationship described in Section 3.8 could conceivably be used by a parent domain to sign
messages with identities in a subdomain not administratively related to the parent. For example,
the ".com" registry could create messages with signatures using an "i=" value in the example.com
domain. There isno general solution to this problem, since the administrative cut could occur
anywhere in the domain name. For example, in the domain "example.podunk.ca.us’ there are three
administrative cuts (podunk.ca.us, ca.us, and us), any of which could create messages with an
identity in the full domain.
INFORMATIVE NOTE: Thisis considered an acceptable risk for the samereason that it is
acceptable for domain delegation. For example, in the example above any of the domains could
potentially ssmply delegate "example.podunk.ca.us' to a server of their choice and completely
replace all DNS-served information. Note that a verifier MAY ignore signatures that come from
an unlikely domain such as".com", as discussed in Section 6.1.1.

Allman, et al. Standards Track [Page 46]

RFC 4871

9. References

DKIM Signatures May 2007

9.1 Normative References

[FIPS.180-2.2002]

[ITU.X660.1997]

[RFC2045]

[RFC2047]

[RFC2119]

[RFC2821]
[RFC2822]
[RFC3447]

[RFC3490]

[RFC4234]

U.S. Department of Commerce, " Secure Hash Standard”, FIPS PUB 180-2,
August 2002.

"Information Technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)", ITU-T Recommendation X.660, 1997.

Freed, N. and N.S. Borenstein, "Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies', RFC 2045,
November 1996.

Moore, K., "MIME (Multipurpose Internet Mail Extensions) Part Three:
M essage header field Extensions for Non-ASCII Text", RFC 2047,
November 1996.

Bradner, S., "Key words for use in RFCs to |ndicate Requirement Levels',
BCP 14, RFC 2119, March 1997.

Klensin, J., "Simple Mail Transfer Protocol”, RFC 2821, April 2001.
Resnick, P., "Internet Message Format", RFC 2822, April 2001.

Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards (PKCS) #1.:
RSA Cryptography Specifications Version 2.1", RFC 3447, February 2003.

Faltstrom, P., Hoffman, P., and A. Costello, "Internationalizing Domain
Namesin Applications (IDNA)", RFC 3490, March 2003.

Crocker, D., Ed. and P. Overdll, "Augmented BNF for Syntax Specifications:
ABNF", RFC 4234, October 2005.

9.2 Informative References

[BONEH03]

[RFC1847]

[RFC2434]

[RFC2440]

[RFC3766]

[RFC3833]

[RFC3851]

Allman, et al.

Proc. 12th USENIX Security Symposium, "Remote Timing Attacks are
Practical”, 2003.

Galvin, J., Murphy, S., Crocker, S., and N. Freed, " Security Multiparts
for MIME: Multipart/Signed and Multipart/Encrypted”, RFC 1847,
October 1995.

Narten, T and H. Alvestrand, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

Cdllas, J., Donnerhacke, L., Finney, H., and R. Thayer, "OpenPGP Message
Format", RFC 2440, November 1998.

Orman, H. and P. Hoffman, "Determining Strengths for Public Keys Used
For Exchanging Symmetric Keys', RFC 3766, April 2004.

Atkins, D. and R. Austein, "Threat Analysis of the Domain Name System
(DNS)", RFC 3833, August 2004.

Ramsdéll, B., "SIMIME Version 3 Message Specification", RFC 3851,
June 1999.

Standards Track [Page 47]

http://tools.ietf.org/html/rfc2045.txt
http://tools.ietf.org/html/rfc2045.txt
http://tools.ietf.org/html/rfc2047.txt
http://tools.ietf.org/html/rfc2047.txt
http://tools.ietf.org/html/rfc2119.txt
http://tools.ietf.org/html/rfc2821.txt
http://tools.ietf.org/html/rfc2822.txt
http://tools.ietf.org/html/rfc3447.txt
http://tools.ietf.org/html/rfc3447.txt
http://tools.ietf.org/html/rfc3490.txt
http://tools.ietf.org/html/rfc3490.txt
http://tools.ietf.org/html/rfc4234.txt
http://tools.ietf.org/html/rfc4234.txt
http://tools.ietf.org/html/rfc1847.txt
http://tools.ietf.org/html/rfc1847.txt
http://tools.ietf.org/html/rfc2434.txt
http://tools.ietf.org/html/rfc2434.txt
http://tools.ietf.org/html/rfc2440.txt
http://tools.ietf.org/html/rfc2440.txt
http://tools.ietf.org/html/rfc3766.txt
http://tools.ietf.org/html/rfc3766.txt
http://tools.ietf.org/html/rfc3833.txt
http://tools.ietf.org/html/rfc3833.txt
http://tools.ietf.org/html/rfc3851.txt

RFC 4871

[RFC3864]

[RFC4033]

[RFC4686]

[RFC4870]

Allman, et al.

DKIM Signatures May 2007

Klyne, G., Nottingham, M., and J. Mogul, "Registration Procedures for
Message Header Fields', BCP 90, September 2004.

Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security
Introduction and Requirements', RFC 4033, March 2005.

Fenton, J., "Analysis of Threats Motivating DomainKeys Identified Mail
(DKIM)", RFC 4686, September 2006.

"Domain-Based Email Authentication Using Public Keys Advertised in the
DNS (DomainKeys)", May 2007.

Standards Track [Page 48]

http://tools.ietf.org/html/rfc4033.txt
http://tools.ietf.org/html/rfc4033.txt
http://tools.ietf.org/html/rfc4686.txt
http://tools.ietf.org/html/rfc4686.txt

RFC 4871 DKIM Signatures May 2007

Authors' Addresses

Eric Allman

Sendmail, Inc.

6425 Christie Ave, Suite 400
Emeryville, CA 94608

USA

Phone: +1 510 594 5501

EMail: erictdkim@sendmail.org
URI:

Jon Callas

PGP Corporation

3460 West Bayshore
Palo Alto, CA 94303
USA

Phone: +1 650 319 9016

EMail: jon@pgp.com

Mark Delany

Y ahoo! Inc

701 First Avenue

Sunnyvale, CA 95087

USA

Phone: +1 408 349 6831

EMail: markd+dkim@yahoo-inc.com
URI:

Miles Libbey

Y ahoo! Inc

701 First Avenue

Sunnyvale, CA 95087

USA

EMail: mlibbeymail-mailsig@yahoo.com
URI:

Jim Fenton

Cisco Systems, Inc.

MS S3-9/2

170 W. Tasman Drive

San Jose, CA 95134-1706
USA

Phone: +1 408 526 5914
EMail: fenton@cisco.com
URI:

Michael Thomas
Cisco Systems, Inc.
MS S39/2

Allman, et al. Standards Track [Page 49]

tel:+15105945501
mailto:eric+dkim@sendmail.org
tel:+16503199016
mailto:jon@pgp.com
tel:+14083496831
mailto:markd+dkim@yahoo-inc.com
mailto:mlibbeymail-mailsig@yahoo.com
tel:+14085265914
mailto:fenton@cisco.com

RFC 4871 DKIM Signatures May 2007

170 W. Tasman Drive
San Jose, CA 95134-1706
Phone: +1 408 525 5386
EMail: mat@cisco.com

Allman, et al. Standards Track [Page 50]

tel:+14085255386
mailto:mat@cisco.com

RFC 4871 DKIM Signatures May 2007

A. Example of Use (INFORMATIVE)

This section shows the complete flow of an email from submission to final delivery, demonstrating
how the various components fit together. The key used in this example is shown in Appendix C.

A.1 The user composes an email

From Joe SixPack <joe@ oot bal | .exanpl e. con»>

To: Suzie Q <suzi e@hoppi ng. exanpl e. net >

Subj ect: |s dinner ready?

Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)

Message- | D <20030712040037. 46341. 5F8J@ oot bal | . exanpl e. con®

Hi .
W [ost the game. Are you hungry yet?

Joe.

A.2 The email is signed
This email is signed by the example.com outbound email server and now looks like this:

DKI M Si gnature: v=1; a=rsa-sha256; s=brisbane; d=exanple.com
c=si nmpl e/ si npl e; g=dns/txt; i=joe@ ootball.exanple.com
h=Received : From: To : Subject : Date : Message-I|D;
bh=2j USOHINNht VGCQANr 9Br | APr eKQ O6Sn7XI kf JVOzv8=;
b=AuUoFEf Dx TDkH LXSZEpZj 79LI CEps6eda7V8de TVFCk4yAUogqCB

4nuj c7YopdGodW-SdNg6xNAZpOPr +kHxt 11 r E+NahMsL/ LbvaHut
KVdkLLkpVaVWwQPzeRDI 009SQ2| | 5Lu7r DNH6n¥ZckBdr | x0or Et ZV
4bmp/ Yzhw cubW=;

Recei ved: fromclientl.football.exanple.com [192.0.2.1]
by submitserver. exanpl e.comwi th SUBM SSI O\;

Fri, 11 Jul 2003 21:01:54 -0700 (PDT)

From Joe SixPack <joe@ oot ball.exanpl e. con>

To: Suzie Q <suzi e@hoppi ng. exanpl e. net >

Subj ect: |s dinner ready?

Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)

Message- | D <20030712040037. 46341. 5F8J@ oot bal | . exanpl e. con®

Hi .
W [ost the game. Are you hungry yet?

Joe.

The signing email server requires access to the private key associated with the "brisbane" selector to
generate this signature.

A.3 The email signature is verified

The signature is normally verified by an inbound SMTP server or possibly the final delivery

agent. However, intervening MTAs can also perform this verification if they choose to do so. The
verification process uses the domain "example.com” extracted from the "d=" tag and the selector
"brisbane" from the "s=" tag in the DKIM-Signature header field to form the DNS DKIM query for:

bri shane. domai nkey. exanpl e. com

Allman, et al. Standards Track [Page 51]

RFC 4871 DKIM Signatures May 2007

Signature verification starts with the physically last Received header field, the From header field,
and so forth, in the order listed in the "h="tag. Verification follows with asingle CRLF followed
by the body (starting with "Hi."). The email is canonically prepared for verifying with the "simple"
method. The result of the query and subsequent verification of the signatureis stored (in this
example) in the X-Authentication-Results header field line. After successful verification, the email
lookslikethis:

X- Aut henti cati on- Resul ts: shoppi ng. exanpl e. net
header . f ron¥j oe@ oot bal | . exanpl e. com; dki nFpass

Recei ved: from nout 23. f oot bal | . exanpl e. com (192. 168. 1. 1)
by shoppi ng. exanpl e. net with SMIP;

Fri, 11 Jul 2003 21:01:59 -0700 (PDT)

DKI Mt Si gnature: v=1; a=rsa-sha256; s=brisbane; d=exanpl e.com
c=si npl e/ si npl e; g=dns/txt; i=joe@ootball.exanple.com
h=Received : From: To : Subject : Date : Message-I|D;
bh=2j USOHONht VGCQANr 9Br | APr eKQ 06Sn7XI kf JVOzv8=;
b=AuUoFEf Dx TDkH LXSZEpZj 79LI CEps6eda7WBdeTVFOk4yAUoqOB

4nuj c7YopdGEdW.-SdNg6xNAZpOPr +kHxt 11 r E+NahMbL/ LbvaHut
KVdkLLkpVaVWQPzeRDI 009SC2I1 | 5Lu7r DNH6n¥ZckBdr | x0or Et ZV
4bmp/ YzhwcubW=;

Recei ved: fromclientl.football.exanple.com [192.0.2.1]
by submi tserver. exanpl e.com wi th SUBM SSI ON;

Fri, 11 Jul 2003 21:01:54 -0700 (PDT)

From Joe SixPack <joe@ ootbal |l .exanpl e. con»

To: Suzie Q <suzi e@hoppi ng. exanpl e. net >

Subj ect: Is dinner ready?

Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)

Message- | D. <20030712040037. 46341. 5F8J@ oot bal | . exanpl e. con>

Hi .
We | ost the gane. Are you hungry yet?

Joe.

Allman, et a. Standards Track [Page 52]

RFC 4871 DKIM Signatures May 2007

B. Usage Examples (INFORMATIVE)

DKIM signing and validating can be used in different ways, for different operational scenarios. This
Appendix discusses some common exampl es.

NOTE: Descriptionsin this Appendix are for informational purposes only. They describe
various ways that DKIM can be used, given particular constraints and needs. In no case are
these examples intended to be taken as providing explanation or guidance concerning DKIM
specification details, when creating an implementation.

B.1 Alternate Submission Scenarios

In the most simple scenario, auser's MUA, MSA, and Internet (boundary) MTA are al within the
same administrative environment, using the same domain name. Therefore, all of the components
involved in submission and initial transfer are related. However, it is common for two or more of the
components to be under independent administrative control. This creates challenges for choosing and
administering the domain name to use for signing, and for its relationship to common email identity
header fields.

B.1.1 Delegated Business Functions

Some organizations assign specific business functions to discrete groups, inside or outside the
organization. The goal, then, is to authorize that group to sign some mail, but to constrain what
signatures they can generate. DKIM selectors (the "s=" signature tag) and granularity (the "g=" key
tag) facilitate this kind of restricted authorization. Examples of these outsourced business functions
are legitimate email marketing providers and corporate benefits providers.

Here, the delegated group needs to be able to send messages that are signed, using the email domain
of the client company. At the same time, the client often is reluctant to register akey for the provider
that grants the ability to send messages for arbitrary addressesin the domain.

There are multiple ways to administer these usage scenarios. In one case, the client organization
provides al of the public query service (for example, DNS) administration, and in another it uses
DNS delegation to enable all ongoing administration of the DKIM key record by the delegated
group.

If the client organization retains responsibility for al of the DNS administration, the outsourcing
company can generate a key pair, supplying the public key to the client company, which then
registersit in the query service, using a unigque selector that authorizes a specific From header field
Local-part. For example, aclient with the domain "example.com™ could have the selector record
specify "g=winter-promotions" so that this signature is only valid for mail with a From address of
"winter-promotions@example.com”. This would enable the provider to send messages using that
specific address and have them verify properly. The client company retains control over the email
address because it retains the ability to revoke the key at any time.

If the client wants the delegated group to do the DNS administration, it can have the domain name
that is specified with the selector point to the provider's DNS server. The provider then creates and
maintains all of the DKIM signature information for that selector. Hence, the client cannot provide
constraints on the L ocal-part of addresses that get signed, but it can revoke the provider's signing
rights by removing the DNS delegation record.

Allman, et al. Standards Track [Page 53]

RFC 4871 DKIM Signatures May 2007

B.1.2 PDAs and Similar Devices

PDAs demonstrate the need for using multiple keys per domain. Suppose that John Doe wanted

to be able to send messages using his corporate email address, jdoe@example.com, and his email
device did not have the ahility to make a Virtual Private Network (VPN) connection to the corporate
network, either because the device islimited or because there are restrictions enforced by his Internet
access provider. If the device was equipped with a private key registered for jdoe@example.com by
the administrator of the example.com domain, and appropriate software to sign messages, John could
sign the message on the device itself before transmission through the outgoing network of the access
service provider.

B.1.3 Roaming Users

Roaming users often find themselves in circumstances where it is convenient or necessary to

use an SMTP server other than their home server; examples are conferences and many hotels. In
such circumstances, a signature that is added by the submission service will use an identity that is
different from the user's home system.

Ideally, roaming users would connect back to their home server using either aVPN or a
SUBMISSION server running with SMTP AUTHentication on port 587. If the signing can be
performed on the roaming user's laptop, then they can sign before submission, although the risk of
further modification is high. If neither of these are possible, these roaming users will not be able to
send mail signed using their own domain key.

B.1.4 Independent (Kiosk) Message Submission

Stand-alone services, such as walk-up kiosks and web-based information services, have no enduring
email service relationship with the user, but users occasionally request that mail be sent on their
behalf. For example, awebsite providing news often allows the reader to forward a copy of the
articleto afriend. Thisistypically done using the reader's own email address, to indicate who the
author is. Thisis sometimes referred to as the "Evite problem”, named after the website of the same
name that allows a user to send invitations to friends.

A common way thisis handled is to continue to put the reader's email address in the From header
field of the message, but put an address owned by the email posting site into the Sender header
field. The posting site can then sign the message, using the domain that is in the Sender field. This
provides useful information to the receiving email site, which is able to correlate the signing domain
with theinitial submission email role.

Receiving sites often wish to provide their end users with information about mail that is mediated

in this fashion. Although the real efficacy of different approachesis a subject for human

factors usability research, one technique that is used is for the verifying system to rewrite the

From header field, to indicate the address that was verified. For example: From: John Doe via
news@news-site.com <jdoe@example.com>. (Note that such rewriting will break a signature, unless
it isdone after the verification pass is complete.)

B.2 Alternate Delivery Scenarios

Email is often received at a mailbox that has an address different from the one used during initial
submission. In these cases, an intermediary mechanism operates at the address originally used and it
then passes the message on to the final destination. This mediation process presents some challenges
for DKIM signatures.

Allman, et al. Standards Track [Page 54]

RFC 4871 DKIM Signatures May 2007

B.2.1 Affinity Addresses

"Affinity addresses’ allow auser to have an email address that remains stable, even as the user
moves among different email providers. They are typically associated with college alumni
associations, professional organizations, and recreational organizations with which they expect to
have along-term relationship. These domains usually provide forwarding of incoming email, and
they often have an associated Web application that authenticates the user and allows the forwarding
address to be changed. However, these services usually depend on users sending outgoing messages
through their own service providers MTAs. Hence, mail that is signed with the domain of the
affinity addressis not signed by an entity that is administered by the organization owning that
domain.

With DKIM, affinity domains could use the Web application to allow users to register per-user keys
to be used to sign messages on behalf of their affinity address. The user would take away the secret
half of the key pair for signing, and the affinity domain would publish the public half in DNS for
access by verifiers.

Thisis another application that takes advantage of user-level keying, and domains used for affinity
addresses would typically have avery large number of user-level keys. Alternatively, the affinity
domain could handle outgoing mail, operating a mail submission agent that authenticates users
before accepting and signing messages for them. Thisis of course dependent on the user's service
provider not blocking the relevant TCP ports used for mail submission.

B.2.2 Simple Address Aliasing (.forward)

In some cases, arecipient is alowed to configure an email address to cause automatic redirection of
email messages from the original address to another, such as through the use of a Unix .forward file.
In this case, messages are typically redirected by the mail handling service of the recipient's domain,
without modification, except for the addition of a Received header field to the message and a change
in the envelope recipient address. In this case, the recipient at the final address' mailbox islikely to
be able to verify the original signature since the signed content has not changed, and DKIM is able to
validate the message signature.

B.2.3 Mailing Lists and Re-Posters

There isawide range of behaviorsin services that take delivery of a message and then resubmit

it. A primary example iswith mailing lists (collectively called "forwarders' below), ranging from
those that make no modification to the message itself, other than to add a Received header field and
change the envelope information, to those that add header fields, change the Subject header field,
add content to the body (typically at the end), or reformat the body in some manner. The simple
ones produce messages that are quite similar to the automated alias services. More elaborate systems
essentially create a new message.

A Forwarder that does not modify the body or signed header fields of a messageis likely to maintain
the validity of the existing signature. It also could choose to add its own signature to the message.

Forwarders which modify a message in away that could make an existing signature invalid are
particularly good candidates for adding their own signatures (e.g., mailing-list-name@example.net).
Since (re-)signing is taking responsibility for the content of the message, these signing forwarders
are likely to be selective, and forward or re-sign amessage only if it is received with avalid
signature or if they have some other basis for knowing that the message is not spoofed.

A common practice among systems that are primarily redistributors of mail isto add a Sender
header field to the message, to identify the address being used to sign the message. This practice

Allman, et al. Standards Track [Page 55]

RFC 4871 DKIM Signatures May 2007

will remove any preexisting Sender header field as required by [RFC2822]. The forwarder applies
anew DKIM-Signature header field with the signature, public key, and related information of the
forwarder.

Allman, et al. Standards Track [Page 56]

RFC 4871

C. Cre

The default signatureis an RSA signed SHA 256 digest of the complete email. For ease of

DKIM Signatures

ating a Public Key (INFORMATIVE)

May 2007

explanation, the openss command is used to describe the mechanism by which keys and signatures
are managed. One way to generate a 1024-bit, unencrypted private key suitable for DKIM isto use
openssl like this:

$ openssl genrsa -out rsa.private 1024

For increased security, the - passi n parameter can also be added to encrypt the private key. Use of
this parameter will require entering a password for several of the following steps. Servers may prefer
to use hardware cryptographic support.

Thegenr sa step resultsin the file rsa.private containing the key information similar to this:

----- BEA N RSA PRI VATE KEY-----

M | CXwi BAAKBgQDW RP/ UC3SBs EmGqZ9ZJWB/ DkMbGeLnQglf W7/ z Yt | xN2SnFC
j XOCK&v3b4j Yf cTNh5i j Ssq631uBl t La7od+v/ Rt dC2UzJ1l WI947gR+Rcac2gb
t o/ NMgJOf zf Vj HAQuKhi t dY9t f 6mrewq aNBcWIol MrPSPDdQPNUYckc Q2Q DAQAB
AoGBALM+XwWk 7akvkU gb+dOxyLB9i 5VBVf j e89Teol we9YJT36BGAN | 4e0l 6QX
/ 1/ / 6 DWJUTB3KI 6wFcn7 TWIcxbS0t cKZX7FsJvUz 1SbnkS54DJck 1EZQ BLa5ckJ
gAYl aql A9C0Zwivbi 58I LI PadX/ rt Hb7pWeeNcZH Krj MA61ZAKEA+i t ss2nRl myO
nl/ 5yDyC uST4dQ¥ OBk AB3t 0SEVc7DeFeDhnClniZzdj ASZNvdHS4gbLl ALhUGEF9m
3hKs GUMVPWI BAPWSV/ U+AWTADFCS22t 72NUur gzeAbzb1HWWHO4y 4+9Hpj k5w L/
eVYi zyuce3/ f Gke7aRYwW ADKygMIdWBH Oc CQQDz500b4j 2QDpPZcONc4d bvMsj
7p70t WRObXxRa6Sz XqqV3+FOVpqgvDns hEBkoCy daYwc 206 WBEBnEXe V8124 XAk EA
qZzGs| xVP+s EVRWZMABKNFSdVUpk3gzKO0Tz/ W Qve5z0UunY9Ax9/ 4PVhp/ j 61bf
eAYXunaj bBSCLI x4D+TunwJBANKPI 5S9i yl sbLs6NkaMHV6k5i oHBBmgCak95J GX
G\Wbt / L2x01 YyM_Az60LVWh2hn7zwt bOCgOr Polke44hFYnf c=

----- END RSA PRI VATE KEY-----

To extract the public-key component from the private key, use opensd like this:

$ openssl rsa -in rsa.private -out rsa.public -pubout -outform PEM

This

This

Allman, et a.

resultsin the file rsa.public containing the key information similar to this:

----- BEG N PUBLI C KEY-----
M G MAOGCSqGSI b3DQEBAQUAA4GNADCBI QKBgQDW RP/ UC3SBs En3qZ9ZJ W8/ DkM
0GeLn@1f Wi7/ zYt | xN2SnFCj x OCK&v3b4j Yf cTNh5i j Ssq631uBl t La7od+v/ R

t dC2UzJ 11 WI947gR+Rcac2gbt o/ NMyJOf zf Vj HAQuKhi t dY9t f 6mewg aNBcWiol

MTPSPDdQPNUYckcQ2Q DAQAB
----- END PUBLI C KEY---- -

public-key data (without the BEGIN and END tags) is placed in the DNS:
brisbane IN TXT ("v=DKIM; p=M G MAOGCSqGSI b3DQEBAQUAA4GNADCBI Q'

" KBgQDWi RP/ UC3SBs ENGgZ9ZJWB/ DkMbGeL.nQylf W7/ z Yt "
" | xXN2SnFG xOCKGOv3b4j Yf cTNh5i j Ssq631uBl t La7od+v"
"/ Rt dC2UzJ 11 WI947qR+Rcac2gbt o/ NMyJOf zf Vj HAQuKhi

"t dY9t f 6rewq aNBcWiol MPSPDAQPNUYckcQQl DAQAB")

Standards Track

[Page 57

RFC 4871 DKIM Signatures May 2007

D. MUA Considerations

When a DKIM signature is verified, the processing system sometimes makes the result available to
the recipient user's MUA. How to present this information to the user in away that helpsthemisa
matter of continuing human factors usability research. The tendency isto have the MUA highlight
the address associated with this signing identity in some way, in an attempt to show the user the
address from which the mail was sent. An MUA might do this with visual cues such as graphics, or
it might include the address in an aternate view, or it might even rewrite the original From address
using the verified information. Some MUAs might indicate which header fields were protected by
the validated DKIM signature. This could be done with a positive indication on the signed header
fields, with a negative indication on the unsigned header fields, by visually hiding the unsigned
header fields, or some combination of these. If an MUA uses visual indications for signed header
fields, the MUA probably needsto be careful not to display unsigned header fieldsin away that
might be construed by the end user as having been signed. If the message has an |= tag whose value
does not extend to the end of the message, the MUA might also hide or mark the portion of the
message body that was not signed.

The aforementioned information is not intended to be exhaustive. The MUA may choose to
highlight, accentuate, hide, or otherwise display any other information that may, in the opinion of the
MUA author, be deemed important to the end user.

Allman, et al. Standards Track [Page 58]

RFC 4871 DKIM Signatures May 2007

E. Acknowledgements

The authors wish to thank Russ Allbery, Edwin Aoki, Claus Assmann, Steve Atkins, Rob Austein,
Fred Baker, Mark Baugher, Steve Bellovin, Nathaniel Borenstein, Dave Crocker, Michael Cudahy,
Dennis Dayman, Jutta Degener, Frank Ellermann, Patrik Faltstrom, Mark Fanto, Stephen Farrell,
Duncan Findlay, Elliot Gillum, Olafur Gudmundsson, Phillip Hallam-Baker, Tony Hansen, Sam
Hartman, Arvel Hathcock, Amir Herzberg, Paul Hoffman, Russ Housley, Craig Hughes, Cullen
Jennings, Don Johnsen, Harry Katz, Murray S. Kucherawy, Barry Leiba, John Levine, Charles
Lindsey, Simon Longsdale, David Margrave, Justin Mason, David Mayne, Thierry Moreau, Steve
Murphy, Russell Nelson, Dave Oran, Doug Otis, Shamim Pirzada, Juan Altmayer Pizzorno, Sanjay
Pol, Blake Ramsdell, Christian Renaud, Scott Renfro, Neil Rerup, Eric Rescorla, Dave Rossetti,
Hector Santos, Jim Schaad, the Spamhaus.org team, Malte S. Stretz, Robert Sanders, Rand Wacker,
Sam Weiler, and Dan Wing for their valuable suggestions and constructive criticism.

The DomainK eys specification was a primary source from which this specification has been derived.
Further information about DomainKeysis at [RFC4870].

Full Copyright Statement
Copyright © The IETF Trust (2007).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as
set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an “AS 1S’ basisand THE
CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF
ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTSOR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Allman, et al. Standards Track [Page 59]

RFC 4871 DKIM Signatures May 2007

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights

or other rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or might not
be available; nor does it represent that it has made any independent effort to identify any such rights.
Information on the procedures with respect to rightsin RFC documents can be found in BCP 78 and
BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the IETF
on-line IPR repository at <http://www.ietf.org/ipr>.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights that may cover technology that may be required to
implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org".

Acknowledgement

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity
(IASA).

! mailto:ietf-ipr@ietf.org

Allman, et al. Standards Track [Page 60]

http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org

	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1 Introduction
	1.1 Signing Identity
	1.2 Scalability
	1.3 Simple Key Management

	2 Terminology and Definitions
	2.1 Signers
	2.2 Verifiers
	2.3 Whitespace
	2.4 Common ABNF Tokens
	2.5 Imported ABNF Tokens
	2.6 DKIM-Quoted-Printable

	3 Protocol Elements
	3.1 Selectors
	3.2 Tag=Value Lists
	3.3 Signing and Verification Algorithms
	3.3.1 The rsa-sha1 Signing Algorithm
	3.3.2 The rsa-sha256 Signing Algorithm
	3.3.3 Key Sizes
	3.3.4 Other Algorithms

	3.4 Canonicalization
	3.4.1 The "simple" Header Canonicalization Algorithm
	3.4.2 The "relaxed" Header Canonicalization Algorithm
	3.4.3 The "simple" Body Canonicalization Algorithm
	3.4.4 The "relaxed" Body Canonicalization Algorithm
	3.4.5 Body Length Limits
	3.4.6 Canonicalization Examples (INFORMATIVE)

	3.5 The DKIM-Signature Header Field
	3.6 Key Management and Representation
	3.6.1 Textual Representation
	3.6.2 DNS Binding
	3.6.2.1 Namespace
	3.6.2.2 Resource Record Types for Key Storage

	3.7 Computing the Message Hashes
	3.8 Signing by Parent Domains

	4 Semantics of Multiple Signatures
	4.1 Example Scenarios
	4.2 Interpretation

	5 Signer Actions
	5.1 Determine Whether the Email Should Be Signed and by Whom
	5.2 Select a Private Key and Corresponding Selector Information
	5.3 Normalize the Message to Prevent Transport Conversions
	5.4 Determine the Header Fields to Sign
	5.5 Recommended Signature Content
	5.6 Compute the Message Hash and Signature
	5.7 Insert the DKIM-Signature Header Field

	6 Verifier Actions
	6.1 Extract Signatures from the Message
	6.1.1 Validate the Signature Header Field
	6.1.2 Get the Public Key
	6.1.3 Compute the Verification

	6.2 Communicate Verification Results
	6.3 Interpret Results/Apply Local Policy

	7 IANA Considerations
	7.1 DKIM-Signature Tag Specifications
	7.2 DKIM-Signature Query Method Registry
	7.3 DKIM-Signature Canonicalization Registry
	7.4 _domainkey DNS TXT Record Tag Specifications
	7.5 DKIM Key Type Registry
	7.6 DKIM Hash Algorithms Registry
	7.7 DKIM Service Types Registry
	7.8 DKIM Selector Flags Registry
	7.9 DKIM-Signature Header Field

	8 Security Considerations
	8.1 Misuse of Body Length Limits ("l=" Tag)
	8.1.1 Addition of New MIME Parts to Multipart/*
	8.1.2 Addition of new HTML content to existing content

	8.2 Misappropriated Private Key
	8.3 Key Server Denial-of-Service Attacks
	8.4 Attacks Against the DNS
	8.5 Replay Attacks
	8.6 Limits on Revoking Keys
	8.7 Intentionally Malformed Key Records
	8.8 Intentionally Malformed DKIM-Signature Header Fields
	8.9 Information Leakage
	8.10 Remote Timing Attacks
	8.11 Reordered Header Fields
	8.12 RSA Attacks
	8.13 Inappropriate Signing by Parent Domains

	9 References
	9.1 Normative References
	9.2 Informative References

	Author's Addresses
	A Example of Use (INFORMATIVE)
	A.1 The user composes an email
	A.2 The email is signed
	A.3 The email signature is verified

	B Usage Examples (INFORMATIVE)
	B.1 Alternate Submission Scenarios
	B.1.1 Delegated Business Functions
	B.1.2 PDAs and Similar Devices
	B.1.3 Roaming Users
	B.1.4 Independent (Kiosk) Message Submission

	B.2 Alternate Delivery Scenarios
	B.2.1 Affinity Addresses
	B.2.2 Simple Address Aliasing (.forward)
	B.2.3 Mailing Lists and Re-Posters

	C Creating a Public Key (INFORMATIVE)
	D MUA Considerations
	E Acknowledgements
	Intellectual Property and Copyright
 Statements

